Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 331: 103238, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38917595

RESUMO

Diffuse soft matter interfaces take many forms, from end-tethered polymer brushes or adsorbed surfactants to self-assembled layers of lipids. These interfaces play crucial roles across a multitude of fields, including materials science, biophysics, and nanotechnology. Understanding the nanostructure and properties of these interfaces is fundamental for optimising their performance and designing novel functional materials. In recent years, reflectometry techniques, in particular neutron reflectometry, have emerged as powerful tools for elucidating the intricate nanostructure of soft matter interfaces with remarkable precision and depth. This review provides an overview of selected recent developments in reflectometry and their applications for illuminating the nanostructure of diffuse interfaces. We explore various principles and methods of neutron and X-ray reflectometry, as well as ellipsometry, and discuss advances in their experimental setups and data analysis approaches. Improvements to experimental neutron reflectometry methods have enabled greater time resolution in kinetic measurements and elucidation of diffuse structure under shear or confinement, while innovation in analysis protocols has significantly reduced data processing times, facilitated co-refinement of reflectometry data from multiple instruments and provided greater-than-ever confidence in proposed structural models. Furthermore, we highlight some significant research findings enabled by these techniques, revealing the organisation, dynamics, and interfacial phenomena at the nanoscale. We also discuss future directions and potential advancements in reflectometry techniques. By shedding light on the nanostructure of diffuse interfaces, reflectometry techniques enable the rational design and tailoring of interfaces with enhanced properties and functionalities.

2.
Langmuir ; 40(1): 335-347, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38117209

RESUMO

Pertinent to cryopreservation as well as energy storage and batteries, nonaqueous electrolytes and their mixtures with water were investigated. In particular, specific ion-induced effects on the modulation of a poly(N-isopropylacrylamide) (PNIPAM) brush were investigated in various dimethyl sulfoxide (DMSO)-water solvent mixtures. Spectroscopic ellipsometry and neutron reflectometry were employed to probe changes in brush swelling and structure, respectively. In water-rich solvents (i.e., pure water and 6 mol % DMSO), PNIPAM undergoes a swollen to collapsed thermotransition with increasing temperature, whereby a forward Hofmeister series was noted; K+ and Li+ electrolytes composed of SCN- and I- salted-in (stabilized) PNIPAM chains, and electrolytes of Cl- and Br- salted-out (destabilized) the polymer. The cation was seen to play a lesser role than that of the anion, merely modulating the magnitude of the anion effect. In 70 mol % DMSO, a collapsed to swollen thermotransition was noted for PNIPAM. Here, concentration-dependent specific ion effects were observed; a forward series was observed in 0.2 mol % electrolytes, whereas increasing the electrolyte concentration to 0.9 mol % led to a series reversal. While no thermotransition was observed in pure DMSO, a solvent-induced specific ion series reversal was noted; SCN- destabilized the brush and Cl- stabilized the brush. Both series reversals are attributed to the delicate balance of interactions between the solvent, solute (ion), and substrate (brush). Namely, the stability of the solvent clusters was hypothesized to drive polymer solvation.

3.
ACS Appl Mater Interfaces ; 15(48): 56433-56441, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37975828

RESUMO

Tethered-liquid perfluorocarbons (TLPs) are a class of liquid-infused surfaces with the ability to reduce blood clot formation (thrombosis) on blood-contacting medical devices. TLP comprises a tethered perfluorocarbon (TP) infused with a liquid perfluorocarbon (LP); this LP must be retained to maintain the antithrombotic properties of the layer. However, the stability of the LP layer remains in question, particularly for medical devices under blood flow. In this study, the lubricant thickness is spatially mapped and quantified in situ through confocal dual-wavelength reflection interference contrast microscopy. TLP coatings prepared on glass substrates are exposed to the flow of 37% glycerol/water mixtures (v/v) or whole blood at a shear strain rate of around 2900 s-1 to mimic physiological conditions (similar to flow conditions found in coronary arteries). Excess lubricant (>2 µm film thickness) is removed upon commencement of flow. For untreated glass, the lubricant is completely depleted after 1 min of shear flow. However, on optimized TLP surfaces, nanoscale films of lubricants (thickness between 100 nm and 2 µm) are retained over many tens of minutes of flow. The nanoscale films conform to the underlying structure of the TP layer and are sufficient to prevent the adhesion of red blood cells and platelets.


Assuntos
Fluorocarbonos , Lubrificantes , Lubrificantes/farmacologia , Lubrificantes/química , Excipientes
4.
Angew Chem Int Ed Engl ; 62(41): e202308008, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37550243

RESUMO

Slippery covalently-attached liquid surfaces (SCALS) with low contact angle hysteresis (CAH, <5°) and nanoscale thickness display impressive anti-adhesive properties, similar to lubricant-infused surfaces. Their efficacy is generally attributed to the liquid-like mobility of the constituent tethered chains. However, the precise physico-chemical properties that facilitate this mobility are unknown, hindering rational design. This work quantifies the chain length, grafting density, and microviscosity of a range of polydimethylsiloxane (PDMS) SCALS, elucidating the nanostructure responsible for their properties. Three prominent methods are used to produce SCALS, with characterization carried out via single-molecule force measurements, neutron reflectometry, and fluorescence correlation spectroscopy. CO2 snow-jet cleaning was also shown to reduce the CAH of SCALS via a modification of their grafting density. SCALS behavior can be predicted by reduced grafting density, Σ, with the lowest water CAH achieved at Σ≈2. This study provides the first direct examination of SCALS grafting density, chain length, and microviscosity and supports the hypothesis that SCALS properties stem from a balance of layer uniformity and mobility.

5.
J Chem Phys ; 158(21)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37278476

RESUMO

The capture of moisture from the atmosphere through condensation has the potential to provide a sustainable source of water. Here, we investigate the condensation of humid air at low subcooling condition (11 °C), similar to conditions for natural dew capture, and explore how water contact angle and contact angle hysteresis affect the rates of water capture. We compare water collection on three families of surfaces: (i) hydrophilic (polyethylene oxide, MPEO) and hydrophobic (polydimethylsiloxane, PDMS) molecularly thin coatings grafted on smooth silicon wafers, which produce slippery covalently attached liquid surfaces (SCALSs), with low contact angle hysteresis (CAH = 6°); (ii) the same coatings grafted on rougher glass, with high CAH (20°-25°); (iii) hydrophilic polymer surfaces [poly(N-vinylpyrrolidone), PNVP] with high CAH (30°). Upon exposure to water, the MPEO SCALS swell, which likely further increases their droplet shedding ability. MPEO and PDMS coatings collect similar volume of water (around 5 l m-2 day-1), both when they are SCALS and non-slippery. Both MPEO and PDMS layers collect about 20% more water than PNVP surfaces. We present a basic model showing that, under low heat flux conditions, on all MPEO and PDMS layers, the droplets are so small (600-2000 µm) that there is no/low heat conduction resistance across the droplets, irrespective of the exact value of contact angle and CAH. As the time to first droplet departure is much faster on MPEO SCALS (28 min) than on PDMS SCALS (90 min), slippery hydrophilic surfaces are preferable in dew collection applications where the collection time frame is limited.

6.
Adv Colloid Interface Sci ; 315: 102906, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37099851

RESUMO

Over the past decade, a new class of slippery, anti-adhesive surfaces known as slippery covalently-attached liquid surfaces (SCALS) has emerged, characterized by low values of contact angle hysteresis (CAH, less than 5°) with water and most solvents. Despite their nanoscale thickness (1 to 5 nm), SCALS exhibit behavior similar to lubricant-infused surfaces, including high droplet mobility and the ability to prevent icing, scaling, and fouling. To date, SCALS have primarily been obtained using grafted polydimethylsiloxane (PDMS), though there are also examples of polyethylene oxide (PEO), perfluorinated polyether (PFPE), and short-chain alkane SCALS. Importantly, the precise physico-chemical characteristics that enable ultra-low CAH are unknown, making rational design of these systems impossible. In this review, we conduct a quantitative and comparative analysis of reported values of CAH, molecular weight, grafting density, and layer thickness for a range of SCALS. We find that CAH does not scale monotonically with any reported parameter; instead, the CAH minimum is found at intermediate values. For PDMS, optimal behavior is observed at advancing contact angle of 106°, molecular weight between 2 and 10 kg mol-1, and grafting density of around 0.5 nm-2. CAH on SCALS is lowest for layers created from end-grafted chains and increases with the number of binding sites, and can generally be improved by increasing the chemical homogeneity of the surface through the capping of residual silanols. We review the existing literature on SCALS, including both synthetic and functional aspects of current preparative methods. The properties of reported SCALS are quantitatively analyzed, revealing trends in the existing data and highlighting areas for future experimental study.

7.
J Colloid Interface Sci ; 634: 983-994, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36571860

RESUMO

HYPOTHESIS: Specific ion effects govern myriad biological phenomena, including protein-ligand interactions and enzyme activity. Despite recent advances, detailed understanding of the role of ion hydrophobicity in specific ion effects, and the intersection with hydrotropic effects, remains elusive. Short chain fatty acid sodium salts are simple amphiphiles which play an integral role in our gastrointestinal health. We hypothesise that increasing a fatty acid's hydrophobicity will manifest stronger salting-out behaviour. EXPERIMENTS: Here we study the effect of these amphiphiles on an exemplar thermoresponsive polymer brush system, conserving the carboxylate anion identity while varying anion hydrophobicity via the carbon chain length. Ellipsometry and quartz crystal microbalance with dissipation monitoring were used to characterise the thermoresponse and viscoelasticity of the brush, respectively, whilst neutron reflectometry was used to reveal the internal structure of the brush. Diffusion-ordered nuclear magnetic resonance spectroscopy and computational investigations provide insight into polymer-ion interactions. FINDINGS: Surface sensitive techniques unveiled a non-monotonic trend in salting-out ability with increasing anion hydrophobicity, revealing the bundle-like morphology of the ion-collapsed system. An intersection between ion-specific and hydrotropic effects was observed both experimentally and computationally; trending from good anti-hydrotrope towards hydrotropic behaviour with increasing anion hydrophobicity, accompanying a change in hydrophobic hydration.


Assuntos
Polímeros , Cloreto de Sódio , Polímeros/química , Ânions/química , Interações Hidrofóbicas e Hidrofílicas , Hidrocarbonetos
8.
J Colloid Interface Sci ; 631(Pt A): 260-271, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36395740

RESUMO

HYPOTHESIS: Anionic surfactants have been reported to interact with poly(N-isopropyl acrylamide) (PNIPAM), suppressing its thermoresponse. Scattering and NMR studies of the anionic sodium dodecylsulfate (SDS) system propose that the PNIPAM-surfactant interaction is purely hydrophobic. However, prior phenomenological investigations of a range of surfactant identities (anionic, cationic, nonionic) show that only anionic surfactants affect the thermoresponse and conformation of PNIPAM, implying that the hydrophilic head-group also contributes. Crucially, the phenomenological experiments do not measure the affinity of the tested surfactants to the polymer, only their effect on its behaviour. EXPERIMENTS: We study the adsorption of six surfactants within a planar PNIPAM brush system, elucidating the polymer conformation, thermoresponse, and surfactant adsorption kinetics using ellipsometry, neutron reflectometry (NR), optical reflectometry and the quartz crystal microbalance technique. NR is used to measure the distribution of surfactants within the brush. FINDINGS: We find that only anionic surfactants modify the structure and thermoresponse of PNIPAM, with the greater affinity of anionic surfactants for PNIPAM (relative to cationic and nonionic surfactants) being the primary reason for this behaviour. These results show that the surfactant head-group has a more critical role in mediating PNIPAM-surfactant interaction than previously reported. Taking inspiration from prior molecular dynamics work on the PEO-surfactant system, we propose an interaction mechanism for PNIPAM and SDS that reconciles evidence for hydrophobic interaction with the observed head-group-dependent affinity.


Assuntos
Surfactantes Pulmonares , Tensoativos , Resinas Acrílicas , Dodecilsulfato de Sódio , Excipientes , Polímeros
9.
J Colloid Interface Sci ; 586: 292-304, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189318

RESUMO

HYPOTHESIS: Grafted poly(ethylene glycol) methyl ether methacrylate (POEGMA) copolymer brushes change conformation in response to temperature ('thermoresponse'). In the presence of different ions the thermoresponse of these coatings is dramatically altered. These effects are complex and poorly understood with no all-inclusive predictive theory of specific ion effects. As natural environments are composed of mixed electrolytes, it is imperative we understand the interplay of different ions for future applications. We hypothesise anion mixtures from the same end of the Hofmeister series (same-type anions) will exhibit non-additive and competitive behaviour. EXPERIMENTS: The behaviour of POEGMA brushes, synthesised via surface-initiated ARGET-ATRP, in both single and mixed aqueous electrolyte solutions was characterised with ellipsometry and neutron reflectometry as a function of temperature. FINDINGS: In mixed fluoride and chloride aqueous electrolytes (salting-out ions), or mixed thiocyanate and iodide aqueous electrolytes (salting-in ions), a non-monotonic concentration-dependent influence of the two anions on the thermoresponse of the brush was observed. A new term, δ, has been defined to quantitively describe synergistic or antagonistic behaviour. This study determined the specific ion effects imparted by salting-out ions are dependent on available solvent molecules, whereas the influence of salting-in ions is dependent on the interactions of the anions and polymer chains.

10.
Macromolecules ; 53(23): 10644-10654, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33328692

RESUMO

Porous membranes coated with so-called asymmetric polyelectrolyte multilayers (PEMs) have recently been shown to outperform commercial membranes for micropollutant removal. They consist of open support layers of poly(styrene sulfonate) (PSS)/poly(allylamine) (PAH) capped by denser and more selective layers of either PAH/poly(acrylic acid) (PAA) or PAH/Nafion. Unfortunately, the structure of these asymmetric PEMs, and thus their superior membrane performance, is poorly understood. In this work, neutron reflectometry (NR) is employed to elucidate the multilayered structure and hydration of these asymmetric PEMs. NR reveals that the multilayers are indeed asymmetric in structure, with distinct bottom and top multilayers when air-dried and when solvated. The low hydration of the top [PAH/Nafion] multilayer, together with the low water permeance of comparable [PAH/Nafion]-capped PEM membranes, demonstrate that it is a reduction in hydration that makes these separation layers denser and more selective. In contrast, the [PAH/PAA] capping multilayers are more hydrated than the support [PSS/PAH] layers, signifying that, here, densification of the separation layer occurs through a decrease in the mesh size (or effective pore size) of the top layer due to the higher charge density of the PAH/PAA couple compared to the PSS/PAH couple. The [PAH/PAA] and [PAH/Nafion] separation layers are extremely thin (∼4.5 and ∼7 nm, respectively), confirming that these asymmetric PEM membranes have some of the thinnest separation layers ever achieved.

11.
Langmuir ; 36(42): 12460-12472, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33105998

RESUMO

Multi-stimulus responsive poly(2-(2-methoxyethoxy)ethyl methacrylate-co-2-(diethylamino)ethyl methacrylate) [P(MEO2MA-co-DEA)] 80:20 mol % copolymer brushes were synthesized on planar silica substrates via surface-initiated activators continuously regenerated via electron transfer atom transfer radical polymerization. Brush thickness was sensitive to changes in pH and temperature as monitored with ellipsometry. At low pH, the brush is charged and swollen, while at high pH, the brush is uncharged and more collapsed. Clear thermoresponsive behavior is also observed with the brush more swollen at low temperatures compared to high temperatures at both high and low pH. Neutron reflectometry was used to determine the polymer volume fraction profiles (VFPs) at various pH values and temperatures. A region of lower polymer content, or a depletion region, near the substrate is present in all of the experimental polymer VFPs, and it is more pronounced at low pH (high charge) and less so at high pH (low charge). Polymer VFPs calculated through numerical self-consistent field theory suggest that enrichment of DEA monomers near the substrate results in the experimentally observed non-monotonic VFPs. Adsorption of DEA monomers to the substrate prior to initiation of polymerization could give rise to DEA segment-enriched region proximal to the substrate.

12.
Phys Chem Chem Phys ; 21(8): 4650-4662, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30747169

RESUMO

The temperature induced swelling/collapse transition of poly(oligoethylene glycol methacrylate) (POEGMA) brushes has been investigated in electrolyte solutions comprised of multiple anions. The behaviour of a POEGMA brush in mixed salt environments of potassium acetate (KCH3COO, causes collapse) and thiocyanate (KSCN, causes swelling), two ions at opposite ends of the Hofmeister series, has been monitored with neutron reflectometry (NR) and quartz crystal microbalance with dissipation (QCM-D). These techniques revealed that the balance of the swelling/collapse influence of the two ions on the structure of the brush is temperature dependent. At low temperatures in mixed salt environments, the influence of the acetate and thiocyanate ions appears additive, antagonistic and approximately equal in magnitude, with brush thickness and dissipation similar to the brush in the absence of electrolyte. At higher temperatures, the influence of the acetate ion diminishes, resulting in an increase in the relative influence of the thiocyanate ion on the brush conformation. These temperature dependent specific ion effects are attributed to increased steric crowding in the brush, along with an increased affinity of the thiocyanate ion for the polymer at higher temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA