Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(12): e202318849, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38239128

RESUMO

Cyanamides have emerged as privileged scaffolds in covalent inhibitors of deubiquitinating enzymes (DUBs). However, many compounds with a cyanopyrrolidine warhead show cross-reactivity toward small subsets of DUBs or toward the protein deglycase PARK7/DJ-1, hampering their use for the selective perturbation of a single DUB in living cells. Here, we disclose N'-alkyl,N-cyanopiperazines as structures for covalent enzyme inhibition with exceptional specificity for the DUB UCHL1 among 55 human deubiquitinases and with effective target engagement in cells. Notably, transitioning from 5-membered pyrrolidines to 6-membered heterocycles eliminated PARK7 binding and introduced context-dependent reversibility of the isothiourea linkage to the catalytic cysteine of UCHL1. Compound potency and specificity were analysed by a range of biochemical assays and with a crystal structure of a cyanopiperazine in covalent complex with UCHL1. The structure revealed a compound-induced conformational restriction of the cross-over loop, which underlies the observed inhibitory potencies. Through the rationalization of specificities of different cyanamides, we introduce a framework for the investigation of protein reactivity of bioactive nitriles of this compound class. Our results represent an encouraging case study for the refining of electrophilic compounds into chemical probes, emphasizing the potential to engineer specificity through subtle chemical modifications around the warhead.


Assuntos
Inibidores Enzimáticos , Ubiquitina Tiolesterase , Humanos , Inibidores Enzimáticos/farmacologia
2.
Nat Commun ; 13(1): 5950, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216817

RESUMO

Ubiquitination regulates protein homeostasis and is tightly controlled by deubiquitinases (DUBs). Loss of the DUB UCHL1 leads to neurodegeneration, and its dysregulation promotes cancer metastasis and invasiveness. Small molecule probes for UCHL1 and DUBs in general could help investigate their function, yet specific inhibitors and structural information are rare. Here we report the potent and non-toxic chemogenomic pair of activity-based probes GK13S and GK16S for UCHL1. Biochemical characterization of GK13S demonstrates its stereoselective inhibition of cellular UCHL1. The crystal structure of UCHL1 in complex with GK13S shows the enzyme locked in a hybrid conformation of apo and Ubiquitin-bound states, which underlies its UCHL1-specificity within the UCH DUB family. Phenocopying a reported inactivating mutation of UCHL1 in mice, GK13S, but not GK16S, leads to reduced levels of monoubiquitin in a human glioblastoma cell line. Collectively, we introduce a set of structurally characterized, chemogenomic probes suitable for the cellular investigation of UCHL1.


Assuntos
Ubiquitina Tiolesterase , Ubiquitina , Animais , Humanos , Camundongos , Ubiquitina/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA