Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
SLAS Discov ; 25(7): 709-722, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32484408

RESUMO

Three-dimensional (3D) spheroid models are rapidly gaining favor for drug discovery applications due to their improved morphological characteristics, cellular complexity, long lifespan in culture, and higher physiological relevance relative to two-dimensional (2D) cell culture models. High-content imaging (HCI) of 3D spheroid models has the potential to provide valuable information to help researchers untangle disease pathophysiology and assess novel therapies more effectively. The transition from 2D monolayer models to dense 3D spheroids in HCI applications is not trivial, however, and requires 3D-optimized protocols, instrumentation, and resources. Here, we discuss considerations for moving from 2D to 3D models and present a framework for HCI and analysis of 3D spheroid models in a drug discovery setting. We combined scaffold-free, multicellular spheroid models with scalable, automation-compatible plate technology enabling image-based applications ranging from high-throughput screening to more complex, lower-throughput microphysiological systems of organ networks. We used this framework in three case studies: investigation of lipid droplet accumulation in a human liver nonalcoholic steatohepatitis (NASH) model, real-time immune cell interactions in a multicellular 3D lung cancer model, and a high-throughput screening application using a 3D co-culture model of gastric carcinoma to assess dose-dependent drug efficacy and specificity. The results of these proof-of-concept studies demonstrate the potential for high-resolution image-based analysis of 3D spheroid models for drug discovery applications, and confirm that cell-level and temporal-spatial analyses that fully exploit multicellular features of spheroid models are not only possible but soon will be routine practice in drug discovery workflows.


Assuntos
Descoberta de Drogas , Imageamento Tridimensional/tendências , Imagem Molecular/tendências , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Humanos , Gotículas Lipídicas/ultraestrutura , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/ultraestrutura , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/ultraestrutura , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia
2.
Biomaterials ; 28(35): 5246-58, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17826828

RESUMO

Electrophysiological activities of neuronal networks can be recorded on microelectrode arrays (MEAs). This technique requires tight coupling between MEA-surfaces and cells. Therefore, this study investigated the interface between DRG neurons and MEA-surface materials after adsorption of neurite promoting proteins: laminin-111, fibronectin, L1Ig6 and poly-l-lysine. Moreover, substrate-induced effects on neuronal networks with time were analyzed. The thickness of adsorbed protein layers was found between approximately 1 nm for poly-l-lysine and approximately 80 nm for laminin-111 on platinum, gold and silicon nitride. The neuron-to-substrate interface was characterized by Scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and SEM after in situ focused-ion-beam milling demonstrating that the ventral cell membrane adhered inhomogeneously to laminin-111 or L1Ig6 surfaces. Tight areas of 20-30 nm and distant areas <1 microm alternated and even tightest areas did not correlate with the physical thickness of the protein layers. This study illustrates the difficulties to predict cell-to-material interfaces that contribute substantially to the success of in vitro or in vivo systems. Moreover, focused ion beam (FIB)/SEM is explored as a new technique to analyze such interfaces.


Assuntos
Neurônios/fisiologia , Adsorção , Animais , Adesão Celular/fisiologia , Diferenciação Celular/fisiologia , Embrião de Galinha , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Gânglios Espinais/ultraestrutura , Microeletrodos , Rede Nervosa/citologia , Rede Nervosa/ultraestrutura , Neurônios/citologia , Neurônios/ultraestrutura , Análise Serial de Proteínas , Propriedades de Superfície
3.
Tissue Eng ; 12(9): 2541-53, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16995787

RESUMO

Cell-based therapies and tissue engineering initiatives are gathering clinical momentum for next-generation treatment of tissue deficiencies. By using gravity-enforced self-assembly of monodispersed primary cells, we have produced adult and neonatal rat cardiomyocyte-based myocardial microtissues that could optionally be vascularized following coating with human umbilical vein endothelial cells (HUVECs). Within myocardial microtissues, individual cardiomyocytes showed native-like cell shape and structure, and established electrochemical coupling via intercalated disks. This resulted in the coordinated beating of microtissues, which was recorded by means of a multi-electrode complementary metal-oxide-semiconductor microchip. Myocardial microtissues (microm3 scale), coated with HUVECs and cast in a custom-shaped agarose mold, assembled to coherent macrotissues (mm3 scale), characterized by an extensive capillary network with typical vessel ultrastructures. Following implantation into chicken embryos, myocardial microtissues recruited the embryo's capillaries to functionally vascularize the rat-derived tissue implant. Similarly, transplantation of rat myocardial microtissues into the pericardium of adult rats resulted in time-dependent integration of myocardial microtissues and co-alignment of implanted and host cardiomyocytes within 7 days. Myocardial microtissues and custom-shaped macrotissues produced by cellular self-assembly exemplify the potential of artificial tissue implants for regenerative medicine.


Assuntos
Bioprótese , Células Endoteliais/transplante , Miócitos Cardíacos/transplante , Neovascularização Fisiológica , Transplante de Tecidos , Transplantes , Animais , Animais Recém-Nascidos , Células Cultivadas , Embrião de Galinha , Técnicas de Cocultura , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Humanos , Miocárdio/metabolismo , Miocárdio/ultraestrutura , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Ratos , Ratos Wistar , Engenharia Tecidual/métodos , Transplante de Tecidos/métodos , Transplante Heterólogo , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA