Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
Clin J Am Soc Nephrol ; 17(4): 594-601, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34911732

RESUMO

The Kidney Precision Medicine Project (KPMP) seeks to establish a molecular atlas of the kidney in health and disease and improve our understanding of the molecular drivers of CKD and AKI. Herein, we describe the case of a 66-year-old woman with CKD who underwent a protocol KPMP kidney biopsy. Her clinical history included well-controlled diabetes mellitus, hypertension, and proteinuria. The patient's histopathology was consistent with modest hypertension-related kidney injury, without overt diabetic kidney disease. Transcriptomic signatures of the glomerulus, interstitium, and tubular subsegments were obtained from laser microdissected tissue. The molecular signatures that were uncovered revealed evidence of early diabetic kidney disease adaptation and ongoing active tubular injury with enriched pathways related to mesangial cell hypertrophy, glycosaminoglycan biosynthesis, and apoptosis. Molecular evidence of diabetic kidney disease was found across the nephron. Novel molecular assays can supplement and enrich the histopathologic diagnosis obtained from a kidney biopsy.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Hipertensão Renal , Hipertensão , Insuficiência Renal Crônica , Idoso , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/genética , Feminino , Humanos , Hipertensão/complicações , Nefrite , Proteinúria
3.
Mol Psychiatry ; 26(3): 772-783, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-30976085

RESUMO

The 3q29 deletion confers increased risk for neuropsychiatric phenotypes including intellectual disability, autism spectrum disorder, generalized anxiety disorder, and a >40-fold increased risk for schizophrenia. To investigate consequences of the 3q29 deletion in an experimental system, we used CRISPR/Cas9 technology to introduce a heterozygous deletion into the syntenic interval on C57BL/6 mouse chromosome 16. mRNA abundance for 20 of the 21 genes in the interval was reduced by ~50%, while protein levels were reduced for only a subset of these, suggesting a compensatory mechanism. Mice harboring the deletion manifested behavioral impairments in multiple domains including social interaction, cognitive function, acoustic startle, and amphetamine sensitivity, with some sex-dependent manifestations. In addition, 3q29 deletion mice showed reduced body weight throughout development consistent with the phenotype of 3q29 deletion syndrome patients. Of the genes within the interval, DLG1 has been hypothesized as a contributor to the neuropsychiatric phenotypes. However, we show that Dlg1+/- mice did not exhibit the behavioral deficits seen in mice harboring the full 3q29 deletion. These data demonstrate the following: the 3q29 deletion mice are a valuable experimental system that can be used to interrogate the biology of 3q29 deletion syndrome; behavioral manifestations of the 3q29 deletion may have sex-dependent effects; and mouse-specific behavior phenotypes associated with the 3q29 deletion are not solely due to haploinsufficiency of Dlg1.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Esquizofrenia , Animais , Criança , Deleção Cromossômica , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Deficiências do Desenvolvimento/genética , Modelos Animais de Doenças , Humanos , Deficiência Intelectual/genética , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Esquizofrenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA