Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Sci Rep ; 13(1): 10342, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604847

RESUMO

African swine fever virus (ASFV) is a lethal animal pathogen that enters its host cells through endocytosis. So far, host factors specifically required for ASFV replication have been barely identified. In this study a genome-wide CRISPR/Cas9 knockout screen in porcine cells indicated that the genes RFXANK, RFXAP, SLA-DMA, SLA-DMB, and CIITA are important for productive ASFV infection. The proteins encoded by these genes belong to the major histocompatibility complex II (MHC II), or swine leucocyte antigen complex II (SLA II). RFXAP and CIITA are MHC II-specific transcription factors, whereas SLA-DMA/B are subunits of the non-classical MHC II molecule SLA-DM. Targeted knockout of either of these genes led to severe replication defects of different ASFV isolates, reflected by substantially reduced plating efficiency, cell-to-cell spread, progeny virus titers and viral DNA replication. Transgene-based reconstitution of SLA-DMA/B fully restored the replication capacity demonstrating that SLA-DM, which resides in late endosomes, plays a crucial role during early steps of ASFV infection.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Traumatismos Craniocerebrais , Animais , Suínos , Vírus da Febre Suína Africana/genética , Replicação do DNA , DNA Viral , Replicação Viral/genética , Antígenos de Histocompatibilidade Classe II/genética , Proteínas de Membrana , Complexo Principal de Histocompatibilidade , Febre Suína Africana/genética
2.
Nature ; 619(7969): 338-347, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37380775

RESUMO

Spillover events of avian influenza A viruses (IAVs) to humans could represent the first step in a future pandemic1. Several factors that limit the transmission and replication of avian IAVs in mammals have been identified. There are several gaps in our understanding to predict which virus lineages are more likely to cross the species barrier and cause disease in humans1. Here, we identified human BTN3A3 (butyrophilin subfamily 3 member A3)2 as a potent inhibitor of avian IAVs but not human IAVs. We determined that BTN3A3 is expressed in human airways and its antiviral activity evolved in primates. We show that BTN3A3 restriction acts primarily at the early stages of the virus life cycle by inhibiting avian IAV RNA replication. We identified residue 313 in the viral nucleoprotein (NP) as the genetic determinant of BTN3A3 sensitivity (313F or, rarely, 313L in avian viruses) or evasion (313Y or 313V in human viruses). However, avian IAV serotypes, such as H7 and H9, that spilled over into humans also evade BTN3A3 restriction. In these cases, BTN3A3 evasion is due to substitutions (N, H or Q) in NP residue 52 that is adjacent to residue 313 in the NP structure3. Thus, sensitivity or resistance to BTN3A3 is another factor to consider in the risk assessment of the zoonotic potential of avian influenza viruses.


Assuntos
Aves , Interações entre Hospedeiro e Microrganismos , Vírus da Influenza A , Influenza Aviária , Influenza Humana , Zoonoses Virais , Animais , Humanos , Aves/virologia , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Vírus da Influenza A/crescimento & desenvolvimento , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/transmissão , Influenza Aviária/virologia , Influenza Humana/prevenção & controle , Influenza Humana/transmissão , Influenza Humana/virologia , Primatas , Sistema Respiratório/metabolismo , Sistema Respiratório/virologia , Medição de Risco , Zoonoses Virais/prevenção & controle , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Replicação Viral
3.
PLoS Pathog ; 19(5): e1011357, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146066

RESUMO

Synonymous recoding of RNA virus genomes is a promising approach for generating attenuated viruses to use as vaccines. Problematically, recoding typically hinders virus growth, but this may be rectified using CpG dinucleotide enrichment. CpGs are recognised by cellular zinc-finger antiviral protein (ZAP), and so in principle, removing ZAP sensing from a virus propagation system will reverse attenuation of a CpG-enriched virus, enabling high titre yield of a vaccine virus. We tested this using a vaccine strain of influenza A virus (IAV) engineered for increased CpG content in genome segment 1. Virus attenuation was mediated by the short isoform of ZAP, correlated with the number of CpGs added, and was enacted via turnover of viral transcripts. The CpG-enriched virus was strongly attenuated in mice, yet conveyed protection from a potentially lethal challenge dose of wildtype virus. Importantly for vaccine development, CpG-enriched viruses were genetically stable during serial passage. Unexpectedly, in both MDCK cells and embryonated hens' eggs that are used to propagate live attenuated influenza vaccines, the ZAP-sensitive virus was fully replication competent. Thus, ZAP-sensitive CpG enriched viruses that are defective in human systems can yield high titre in vaccine propagation systems, providing a realistic, economically viable platform to augment existing live attenuated vaccines.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Vacinas Virais , Animais , Feminino , Humanos , Camundongos , Vírus da Influenza A/genética , Vacinas Atenuadas , Galinhas , Vacinas Virais/genética , Desenvolvimento de Vacinas , Replicação Viral
4.
Front Vet Sci ; 9: 868912, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450136

RESUMO

Animal trypanosomiasis (AT) is a significant livestock disease, affecting millions of animals across Sub-Saharan Africa, Central and South America, and Asia, and is caused by the protozoan parasites Trypanosoma brucei, Trypanosoma vivax, and Trypanosoma congolense, with the largest economic impact in cattle. There is over-reliance on presumptive chemotherapy due to inadequate existing diagnostic tests, highlighting the need for improved AT diagnostics. A small RNA species, the 7SL sRNA, is excreted/secreted by trypanosomes in infected animals, and has been previously shown to reliably diagnose active infection. We sought to explore key properties of 7SL sRNA RT-qPCR assays; namely, assessing the potential for cross-reaction with the widespread and benign Trypanosoma theileri, directly comparing assay performance against currently available diagnostic methods, quantitatively assessing specificity and sensitivity, and assessing the rate of decay of 7SL sRNA post-treatment. Results showed that the 7SL sRNA RT-qPCR assays specific for T. brucei, T. vivax, and T. congolense performed better than microscopy and DNA PCR in detecting infection. The 7SL sRNA signal was undetectable or significantly reduced by 96-h post treatment; at 1 × curative dose there was no detectable signal in 5/5 cattle infected with T. congolense, and in 3/5 cattle infected with T. vivax, with the signal being reduced 14,630-fold in the remaining two T. vivax cattle. Additionally, the assays did not cross-react with T. theileri. Finally, by using a large panel of validated infected and uninfected samples, the species-specific assays are shown to be highly sensitive and specific by receiver operating characteristic (ROC) analysis, with 100% sensitivity (95% CI, 96.44-100%) and 100% specificity (95% CI, 96.53-100%), 96.73% (95% CI, 95.54-99.96%) and 99.19% specificity (95% CI, 92.58-99.60%), and 93.42% (95% CI, 85.51-97.16% %) and 82.43% specificity (95% CI, 72.23-89.44% %) for the T brucei, T. congolense and T. vivax assays, respectively, under the conditions used. These findings indicate that the 7SL sRNA has many attributes that would be required for a potential diagnostic marker of AT: no cross-reaction with T. theileri, high specificity and sensitivity, early infection detection, continued signal even in the absence of detectable parasitaemia in blood, and clear discrimination between infected and treated animals.

5.
BMC Biol ; 20(1): 14, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35027054

RESUMO

BACKGROUND: Infectious diseases of farmed and wild animals pose a recurrent threat to food security and human health. The macrophage, a key component of the innate immune system, is the first line of defence against many infectious agents and plays a major role in shaping the adaptive immune response. However, this phagocyte is a target and host for many pathogens. Understanding the molecular basis of interactions between macrophages and pathogens is therefore crucial for the development of effective strategies to combat important infectious diseases. RESULTS: We explored how porcine pluripotent stem cells (PSCs) can provide a limitless in vitro supply of genetically and experimentally tractable macrophages. Porcine PSC-derived macrophages (PSCdMs) exhibited molecular and functional characteristics of ex vivo primary macrophages and were productively infected by pig pathogens, including porcine reproductive and respiratory syndrome virus (PRRSV) and African swine fever virus (ASFV), two of the most economically important and devastating viruses in pig farming. Moreover, porcine PSCdMs were readily amenable to genetic modification by CRISPR/Cas9 gene editing applied either in parental stem cells or directly in the macrophages by lentiviral vector transduction. CONCLUSIONS: We show that porcine PSCdMs exhibit key macrophage characteristics, including infection by a range of commercially relevant pig pathogens. In addition, genetic engineering of PSCs and PSCdMs affords new opportunities for functional analysis of macrophage biology in an important livestock species. PSCs and differentiated derivatives should therefore represent a useful and ethical experimental platform to investigate the genetic and molecular basis of host-pathogen interactions in pigs, and also have wider applications in livestock.


Assuntos
Vírus da Febre Suína Africana , Doenças Transmissíveis , Vírus da Febre Suína Africana/genética , Animais , Interações Hospedeiro-Patógeno/genética , Macrófagos , Células-Tronco , Suínos
6.
Viruses ; 13(9)2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34578438

RESUMO

An evolutionary arms race occurs between viruses and hosts. Hosts have developed an array of antiviral mechanisms aimed at inhibiting replication and spread of viruses, reducing their fitness, and ultimately minimising pathogenic effects. In turn, viruses have evolved sophisticated counter-measures that mediate evasion of host defence mechanisms. A key aspect of host defences is the ability to differentiate between self and non-self. Previous studies have demonstrated significant suppression of CpG and UpA dinucleotide frequencies in the coding regions of RNA and small DNA viruses. Artificially increasing these dinucleotide frequencies results in a substantial attenuation of virus replication, suggesting dinucleotide bias could facilitate recognition of non-self RNA. The interferon-inducible gene, zinc finger antiviral protein (ZAP) is the host factor responsible for sensing CpG dinucleotides in viral RNA and restricting RNA viruses through direct binding and degradation of the target RNA. Herpesviruses are large DNA viruses that comprise three subfamilies, alpha, beta and gamma, which display divergent CpG dinucleotide patterns within their genomes. ZAP has recently been shown to act as a host restriction factor against human cytomegalovirus (HCMV), a beta-herpesvirus, which in turn evades ZAP detection by suppressing CpG levels in the major immediate-early transcript IE1, one of the first genes expressed by the virus. While suppression of CpG dinucleotides allows evasion of ZAP targeting, synonymous changes in nucleotide composition that cause genome biases, such as low GC content, can cause inefficient gene expression, especially in unspliced transcripts. To maintain compact genomes, the majority of herpesvirus transcripts are unspliced. Here we discuss how the conflicting pressures of ZAP evasion, the need to maintain compact genomes through the use of unspliced transcripts and maintaining efficient gene expression may have shaped the evolution of herpesvirus genomes, leading to characteristic CpG dinucleotide patterns.


Assuntos
Alphaherpesvirinae/genética , Fosfatos de Dinucleosídeos/metabolismo , Genoma Viral , Herpesviridae/genética , Proteínas de Ligação a RNA/metabolismo , Alphaherpesvirinae/metabolismo , Alphaherpesvirinae/fisiologia , Animais , Betaherpesvirinae/genética , Betaherpesvirinae/metabolismo , Betaherpesvirinae/fisiologia , Evolução Molecular , Gammaherpesvirinae/genética , Gammaherpesvirinae/metabolismo , Gammaherpesvirinae/fisiologia , Expressão Gênica , Herpesviridae/metabolismo , Herpesviridae/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Interferons/metabolismo , Splicing de RNA , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/química , Transdução de Sinais , Proteínas Virais/metabolismo
7.
Viruses ; 13(8)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34452438

RESUMO

Herpesviruses are large DNA viruses, which encode up to 300 different proteins including enzymes enabling efficient replication. Nevertheless, they depend on a multitude of host cell proteins for successful propagation. To uncover cellular host factors important for replication of pseudorabies virus (PrV), an alphaherpesvirus of swine, we performed an unbiased genome-wide CRISPR/Cas9 forward screen. To this end, a porcine CRISPR-knockout sgRNA library (SsCRISPRko.v1) targeting 20,598 genes was generated and used to transduce porcine kidney cells. Cells were then infected with either wildtype PrV (PrV-Ka) or a PrV mutant (PrV-gD-Pass) lacking the receptor-binding protein gD, which regained infectivity after serial passaging in cell culture. While no cells survived infection with PrV-Ka, resistant cell colonies were observed after infection with PrV-gD-Pass. In these cells, sphingomyelin synthase 1 (SMS1) was identified as the top hit candidate. Infection efficiency was reduced by up to 90% for PrV-gD-Pass in rabbit RK13-sgms1KO cells compared to wildtype cells accompanied by lower viral progeny titers. Exogenous expression of SMS1 partly reverted the entry defect of PrV-gD-Pass. In contrast, infectivity of PrV-Ka was reduced by 50% on the knockout cells, which could not be restored by exogenous expression of SMS1. These data suggest that SMS1 plays a pivotal role for PrV infection, when the gD-mediated entry pathway is blocked.


Assuntos
Sistemas CRISPR-Cas/genética , Genoma Viral , Herpesvirus Suídeo 1/genética , Interações entre Hospedeiro e Microrganismos , Mutação , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Animais , Linhagem Celular , Edição de Genes , Rim/citologia , Rim/virologia , Suínos , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Replicação Viral
8.
J Gen Virol ; 102(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34020727

RESUMO

Viral infections activate the powerful interferon (IFN) response that induces the expression of several hundred IFN stimulated genes (ISGs). The principal role of this extensive response is to create an unfavourable environment for virus replication and to limit spread; however, untangling the biological consequences of this large response is complicated. In addition to a seemingly high degree of redundancy, several ISGs are usually required in combination to limit infection as individual ISGs often have low to moderate antiviral activity. Furthermore, what ISG or combination of ISGs are antiviral for a given virus is usually not known. For these reasons, and since the function(s) of many ISGs remains unexplored, genome-wide approaches are well placed to investigate what aspects of this response result in an appropriate, virus-specific phenotype. This review discusses the advances screening approaches have provided for the study of host defence mechanisms, including clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9), ISG expression libraries and RNA interference (RNAi) technologies.


Assuntos
Antivirais/imunologia , Testes Genéticos , Transdução de Sinais/imunologia , Animais , Sistemas CRISPR-Cas , Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Interferons/genética , Interferons/imunologia , Interferência de RNA , Transdução de Sinais/genética , Replicação Viral/imunologia
9.
Sci Immunol ; 6(57)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33766849

RESUMO

Simian immunodeficiency virus (SIV) insert-expressing, 68-1 rhesus cytomegalovirus (RhCMV/SIV) vectors elicit major histocompatibility complex E (MHC-E)- and MHC-II-restricted, SIV-specific CD8+ T cell responses, but the basis of these unconventional responses and their contribution to demonstrated vaccine efficacy against SIV challenge in the rhesus monkeys (RMs) have not been characterized. We show that these unconventional responses resulted from a chance genetic rearrangement in 68-1 RhCMV that abrogated the function of eight distinct immunomodulatory gene products encoded in two RhCMV genomic regions (Rh157.5/Rh157.4 and Rh158-161), revealing three patterns of unconventional response inhibition. Differential repair of these genes with either RhCMV-derived or orthologous human CMV (HCMV)-derived sequences (UL128/UL130; UL146/UL147) leads to either of two distinct CD8+ T cell response types-MHC-Ia-restricted only or a mix of MHC-II- and MHC-Ia-restricted CD8+ T cells. Response magnitude and functional differentiation are similar to RhCMV 68-1, but neither alternative response type mediated protection against SIV challenge. These findings implicate MHC-E-restricted CD8+ T cell responses as mediators of anti-SIV efficacy and indicate that translation of RhCMV/SIV vector efficacy to humans will likely require deletion of all genes that inhibit these responses from the HCMV/HIV vector.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Reprogramação Celular/imunologia , Infecções por Citomegalovirus/veterinária , Citomegalovirus/imunologia , Doenças dos Macacos/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vacinas Virais/imunologia , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/metabolismo , Reprogramação Celular/genética , Engenharia Genética/métodos , Vetores Genéticos/genética , Imunogenicidade da Vacina , Memória Imunológica , Macaca mulatta , Doenças dos Macacos/imunologia , Doenças dos Macacos/virologia , Fases de Leitura Aberta/genética , Fases de Leitura Aberta/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Eficácia de Vacinas
10.
PLoS Pathog ; 17(1): e1009255, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33508041

RESUMO

Cytomegalovirus (CMV) causes clinically important diseases in immune compromised and immune immature individuals. Based largely on work in the mouse model of murine (M)CMV, there is a consensus that myeloid cells are important for disseminating CMV from the site of infection. In theory, such dissemination should expose CMV to cell-mediated immunity and thus necessitate evasion of T cells and NK cells. However, this hypothesis remains untested. We constructed a recombinant MCMV encoding target sites for the hematopoietic specific miRNA miR-142-3p in the essential viral gene IE3. This virus disseminated poorly to the salivary gland following intranasal or footpad infections but not following intraperitoneal infection in C57BL/6 mice, demonstrating that dissemination by hematopoietic cells is essential for specific routes of infection. Remarkably, depletion of NK cells or T cells restored dissemination of this virus in C57BL/6 mice after intranasal infection, while dissemination occurred normally in BALB/c mice, which lack strong NK cell control of MCMV. These data show that cell-mediated immunity is responsible for restricting MCMV to hematopoietic cell-mediated dissemination. Infected hematopoietic cells avoided cell-mediated immunity via three immune evasion genes that modulate class I MHC and NKG2D ligands (m04, m06 and m152). MCMV lacking these 3 genes spread poorly to the salivary gland unless NK cells were depleted, but also failed to replicate persistently in either the nasal mucosa or salivary gland unless CD8+ T cells were depleted. Surprisingly, CD8+ T cells primed after intranasal infection required CD4+ T cell help to expand and become functional. Together, our data suggest that MCMV can use both hematopoietic cell-dependent and -independent means of dissemination after intranasal infection and that cell mediated immune responses restrict dissemination to infected hematopoietic cells, which are protected from NK cells during dissemination by viral immune evasion. In contrast, viral replication within mucosal tissues depends on evasion of T cells.


Assuntos
Infecções por Herpesviridae/imunologia , Evasão da Resposta Imune , Imunidade Celular , Muromegalovirus/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/virologia , Infecções por Herpesviridae/virologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Muromegalovirus/genética , Muromegalovirus/fisiologia , Replicação Viral
11.
Virus Evol ; 6(2): veaa057, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33029383

RESUMO

CpG dinucleotides are under-represented in the genomes of single-stranded RNA viruses, and SARS-CoV-2 is no exception to this. Artificial modification of CpG frequency is a valid approach for live attenuated vaccine development; if this is to be applied to SARS-CoV-2, we must first understand the role CpG motifs play in regulating SARS-CoV-2 replication. Accordingly, the CpG composition of the SARS-CoV-2 genome was characterised. CpG suppression among coronaviruses does not differ between virus genera but does vary with host species and primary replication site (a proxy for tissue tropism), supporting the hypothesis that viral CpG content may influence cross-species transmission. Although SARS-CoV-2 exhibits overall strong CpG suppression, this varies considerably across the genome, and the Envelope (E) open reading frame (ORF) and ORF10 demonstrate an absence of CpG suppression. Across the Coronaviridae, E genes display remarkably high variation in CpG composition, with those of SARS and SARS-CoV-2 having much higher CpG content than other coronaviruses isolated from humans. This is an ancestrally derived trait reflecting their bat origins. Conservation of CpG motifs in these regions suggests that they have a functionality which over-rides the need to suppress CpG; an observation relevant to future strategies towards a rationally attenuated SARS-CoV-2 vaccine.

12.
PLoS Pathog ; 16(9): e1008844, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32886716

RESUMO

The genomes of RNA and small DNA viruses of vertebrates display significant suppression of CpG dinucleotide frequencies. Artificially increasing dinucleotide frequencies results in substantial attenuation of virus replication, suggesting that these compositional changes may facilitate recognition of non-self RNA sequences. Recently, the interferon inducible protein ZAP, was identified as the host factor responsible for sensing CpG in viral RNA, through direct binding and possibly downstream targeting for degradation. Using an arrayed interferon stimulated gene expression library screen, we identified ZAPS, and its associated factor TRIM25, as inhibitors of human cytomegalovirus (HCMV) replication. Exogenous expression of ZAPS and TRIM25 significantly reduced virus replication while knockdown resulted in increased virus replication. HCMV displays a strikingly heterogeneous pattern of CpG representation with specific suppression of CpG motifs within the IE1 major immediate early transcript which is absent in subsequently expressed genes. We demonstrated that suppression of CpG dinucleotides in the IE1 gene allows evasion of inhibitory effects of ZAP. We show that acute virus replication is mutually exclusive with high levels of cellular ZAP, potentially explaining the higher levels of CpG in viral genes expressed subsequent to IE1 due to the loss of pressure from ZAP in infected cells. Finally, we show that TRIM25 regulates alternative splicing between the ZAP short and long isoforms during HCMV infection and interferon induction, with knockdown of TRIM25 resulting in decreased ZAPS and corresponding increased ZAPL expression. These results demonstrate for the first time that ZAP is a potent host restriction factor against large DNA viruses and that HCMV evades ZAP detection through suppression of CpG dinucleotides within the major immediate early 1 transcript. Furthermore, TRIM25 is required for efficient upregulation of the interferon inducible short isoform of ZAP through regulation of alternative splicing.


Assuntos
Processamento Alternativo , Ilhas de CpG , Infecções por Citomegalovirus/metabolismo , Citomegalovirus/fisiologia , Regulação Viral da Expressão Gênica , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Replicação Viral , Linhagem Celular , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/patologia , Humanos , Proteínas Imediatamente Precoces , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
13.
Transbound Emerg Dis ; 67(6): 3061-3068, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32687668

RESUMO

Equine trypanosomosis comprises different parasitic diseases caused by protozoa of the subgenus Trypanozoon: Trypanosoma equiperdum (causative agent of dourine), Trypanosoma brucei (nagana) and Trypanosoma evansi (surra). Due to the absence of a vaccine and the lack of efficacy of the few available drugs, these diseases represent a major health and economic problem for international equine trade. Development of affordable, sensitive and specific diagnostic tests is therefore crucial to ensure the control of these diseases. Recently, it has been shown that a small RNA derived from the 7SL gene (7SL-sRNA) is produced in high concentrations in sera of cattle infected with Trypanosoma congolense, Trypanosoma vivax and Trypanosoma brucei. Our objective was to determine whether 7SL-sRNA could serve as a marker of active infection in equids experimentally infected with Trypanosoma equiperdum by analysing the sensitivity, specificity and stability of the 7SL-sRNA. Using a two-step RT-qPCR, we were able to detect the presence of 7SL-sRNA between 2 and 7 days post-infection, whereas seroconversion was detected by complement fixation test between 5 and 14 days post-infection. There was a rapid loss of 7SL-sRNA signal from the blood of infected animals one day post-trypanocide treatment. The 7SL-sRNA RT-qPCR allowed an early detection of a treatment failure revealed by glucocorticoid-induced immunosuppression. In addition, the 7SL-sRNA remains detectable in positive sera after 7 days of storage at either 4°C, room temperature or 30°C, suggesting that there is no need to refrigerate serum samples before analysis. Our findings demonstrate continual detection of 7SL-sRNA over an extended period of experimental infection, with signals detected more than six weeks after inoculation. The detection of a strong and consistent 7SL-sRNA signal even during subpatent parasitemia and the early detection of treatment failure highlight the very promising nature of this new diagnostic method.


Assuntos
Mal do Coito (Veterinária)/diagnóstico , Doenças dos Cavalos/diagnóstico , RNA de Protozoário/isolamento & purificação , RNA Citoplasmático Pequeno/isolamento & purificação , Partícula de Reconhecimento de Sinal/isolamento & purificação , Trypanosoma/isolamento & purificação , Animais , Biomarcadores/análise , Testes de Fixação de Complemento/veterinária , Mal do Coito (Veterinária)/parasitologia , Feminino , França , Doenças dos Cavalos/parasitologia , Cavalos , Reação em Cadeia da Polimerase/veterinária , Tripanossomíase/diagnóstico , Tripanossomíase/parasitologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-32587832

RESUMO

Human Cytomegalovirus (HCMV) is a highly prevalent herpesvirus, persistently infecting between 30 and 100% of the population, depending on socio-economic status (Fields et al., 2013). HCMV remains an important clinical pathogen accounting for more than 60% of complications associated with solid organ transplant patients (Kotton, 2013; Kowalsky et al., 2013; Bruminhent and Razonable, 2014). It is also the leading cause of infectious congenital birth defects and has been linked to chronic inflammation and immune aging (Ballard et al., 1979; Griffith et al., 2016; Jergovic et al., 2019). There is currently no effective vaccine and HCMV antivirals have significant side effects. As current antivirals target viral genes, the virus can develop resistance, reducing drug efficacy. There is therefore an urgent need for new antiviral agents that are effective against HCMV, have better toxicity profiles and are less vulnerable to the emergence of resistant strains. Targeting of host factors that are critical to virus replication is a potential strategy for the development of novel antivirals that circumvent the development of viral resistance. Systematic high throughput approaches provide powerful methods for the identification of novel host-virus interactions. As well as contributing to our basic understanding of virus and cell biology, such studies provide potential targets for the development of novel antiviral agents. High-throughput studies, such as RNA sequencing, proteomics, and RNA interference screens, are useful tools to identify HCMV-induced global changes in host mRNA and protein expression levels and host factors important for virus replication. Here, we summarize new findings on HCMV lytic infection from high-throughput studies since 2014 and how screening approaches have evolved.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Antivirais/farmacologia , Antivirais/uso terapêutico , Citomegalovirus/genética , Infecções por Citomegalovirus/tratamento farmacológico , Interações Hospedeiro-Patógeno , Humanos , Replicação Viral
15.
mBio ; 10(5)2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594813

RESUMO

As obligate intracellular pathogens, viruses rely on the host cell machinery to replicate efficiently, with the host metabolism extensively manipulated for this purpose. High-throughput small interfering RNA (siRNA) screens provide a systematic approach for the identification of novel host-virus interactions. Here, we report a large-scale screen for host factors important for human cytomegalovirus (HCMV), consisting of 6,881 siRNAs. We identified 47 proviral factors and 68 antiviral factors involved in a wide range of cellular processes, including the mediator complex, proteasome function, and mRNA splicing. Focused characterization of one of the hits, asparagine synthetase (ASNS), demonstrated a strict requirement for asparagine for HCMV replication which leads to an early block in virus replication before the onset of DNA amplification. This effect is specific to HCMV, as knockdown of ASNS had little effect on herpes simplex virus 1 or influenza A virus replication, suggesting that the restriction is not simply due to a failure in protein production. Remarkably, virus replication could be completely rescued 7 days postinfection with the addition of exogenous asparagine, indicating that while virus replication is restricted at an early stage, it maintains the capacity for full replication days after initial infection. This study represents the most comprehensive siRNA screen for the identification of host factors involved in HCMV replication and identifies the nonessential amino acid asparagine as a critical factor in regulating HCMV virus replication. These results have implications for control of viral latency and the clinical treatment of HCMV in patients.IMPORTANCE HCMV accounts for more than 60% of complications associated with solid organ transplant patients. Prophylactic or preventative treatment with antivirals, such as ganciclovir, reduces the occurrence of early onset HCMV disease. However, late onset disease remains a significant problem, and prolonged treatment, especially in patients with suppressed immune systems, greatly increases the risk of antiviral resistance. Very few antivirals have been developed for use against HCMV since the licensing of ganciclovir, and of these, the same viral genes are often targeted, reducing the usefulness of these drugs against resistant strains. An alternative approach is to target host genes essential for virus replication. Here we demonstrate that HCMV replication is highly dependent on levels of the amino acid asparagine and that knockdown of a critical enzyme involved in asparagine synthesis results in severe attenuation of virus replication. These results suggest that reducing asparagine levels through dietary restriction or chemotherapeutic treatment could limit HCMV replication in patients.


Assuntos
Asparagina/metabolismo , Aspartato-Amônia Ligase/metabolismo , Citomegalovirus/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Replicação Viral , Asparagina/deficiência , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/virologia , Técnicas de Silenciamento de Genes , Testes Genéticos , Herpesvirus Humano 1/crescimento & desenvolvimento , Humanos , Vírus da Influenza A/crescimento & desenvolvimento
16.
PLoS Negl Trop Dis ; 13(2): e0007189, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30779758

RESUMO

Human and animal African trypanosomiasis (HAT & AAT, respectively) remain a significant health and economic issue across much of sub-Saharan Africa. Effective control of AAT and potential eradication of HAT requires affordable, sensitive and specific diagnostic tests that can be used in the field. Small RNAs in the blood or serum are attractive disease biomarkers due to their stability, accessibility and available technologies for detection. Using RNAseq, we have identified a trypanosome specific small RNA to be present at high levels in the serum of infected cattle. The small RNA is derived from the non-coding 7SL RNA of the peptide signal recognition particle and is detected in the serum of infected cattle at significantly higher levels than in the parasite, suggesting active processing and secretion. We show effective detection of the small RNA in the serum of infected cattle using a custom RT-qPCR assay. Strikingly, the RNA can be detected before microscopy detection of parasitaemia in the blood, and it can also be detected during remission periods of infection when no parasitaemia is detectable by microscopy. However, RNA levels drop following treatment with trypanocides, demonstrating accurate prediction of active infection. While the small RNA sequence is conserved between different species of trypanosome, nucleotide differences within the sequence allow generation of highly specific assays that can distinguish between infections with Trypanosoma brucei, Trypanosoma congolense and Trypanosoma vivax. Finally, we demonstrate effective detection of the small RNA directly from serum, without the need for pre-processing, with a single step RT-qPCR assay. Our findings identify a species-specific trypanosome small RNA that can be detected at high levels in the serum of cattle with active parasite infections. This provides the basis for the development of a cheap, non-invasive and highly effective diagnostic test for trypanosomiasis.


Assuntos
Doenças dos Bovinos/diagnóstico , RNA Citoplasmático Pequeno/sangue , Partícula de Reconhecimento de Sinal/sangue , Trypanosoma brucei gambiense/genética , Trypanosoma congolense/genética , Tripanossomíase Africana/veterinária , Tripanossomíase Bovina/diagnóstico , Animais , Biomarcadores/sangue , Bovinos , Doenças dos Bovinos/parasitologia , Feminino , Genoma de Protozoário , Masculino , Técnicas de Diagnóstico Molecular , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Tripanossomicidas/uso terapêutico , Trypanosoma brucei gambiense/efeitos dos fármacos , Trypanosoma congolense/efeitos dos fármacos , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Bovina/tratamento farmacológico
17.
mBio ; 9(3)2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29946045

RESUMO

As obligate intracellular parasites, viruses are completely dependent on host factors for replication. Assembly and egress of complex virus particles, such as human cytomegalovirus (HCMV), are likely to require many host factors. Despite this, relatively few have been identified and characterized. This study describes a novel high-throughput, two-step small interfering RNA (siRNA) screen, which independently measures virus replication and virus production. By combining data from replication and virus production, multiple candidate genes were identified in which knockdown resulted in substantial loss of virus production with limited effect on primary replication, suggesting roles in later stages such as virus assembly and egress. Knockdown of the top candidates, ERC1, RAB4B, COPA, and COPB2, caused profound loss of virus production. Despite COPA and COPB2 being reported to function in the same complex, knockdown of these genes produced distinct phenotypes. Furthermore, knockdown of COPA caused increased expression of viral late genes despite substantial inhibition of viral DNA replication. This suggests that efficient viral genome replication is not required for late gene expression. Finally, we show that RAB4B relocates to the viral assembly compartment following infection with HCMV and knockdown of RAB4B reduces the release of intact virion particles, suggesting that it plays a role in virion assembly and egress. This study demonstrates a powerful high-throughput screen for identification of host-virus interactions, identifies multiple host genes associated with HCMV assembly and egress, and uncovers potentially independent functions for coatomer components COPA and COPB2 during infection.IMPORTANCE Human cytomegalovirus infection is a significant cause of disease in immunocompromised populations, individuals with heart disease, and recipients of solid organ and bone marrow transplants. HCMV is also the leading cause of infectious congenital birth defects. The majority of antivirals in clinical use target components of the virus to specifically inhibit replication. However, a major drawback of this approach is the emergence of resistance. An alternative approach is to target host factors that the virus requires for successful infection. In this study, multiple host factors were identified that were found to be essential for the production of newly infectious human cytomegalovirus. Identifying which host genes are necessary for virus replication extends our understanding of how viruses replicate and how cells function and provides potential targets for novel antivirals.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteína Coatomer/genética , Infecções por Citomegalovirus/genética , Citomegalovirus/fisiologia , Proteínas do Tecido Nervoso/genética , RNA Interferente Pequeno/genética , Proteínas rab5 de Ligação ao GTP/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Coatomer/metabolismo , Citomegalovirus/genética , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno , Humanos , Proteínas do Tecido Nervoso/metabolismo , Montagem de Vírus , Liberação de Vírus , Replicação Viral , Proteínas rab5 de Ligação ao GTP/metabolismo
18.
Open Biol ; 7(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29093211

RESUMO

Successful generation of virions from infected cells is a complex process requiring orchestrated regulation of host and viral genes. Cells infected with human cytomegalovirus (HCMV) undergo a dramatic reorganization of membrane organelles resulting in the formation of the virion assembly compartment, a process that is not fully understood. Here we show that acidification of vacuoles by the cellular v-ATPase is a crucial step in the formation of the virion assembly compartment and disruption of acidification results in mis-localization of virion components and a profound reduction in infectious virus levels. In addition, knockdown of ATP6V0C blocks the increase in nuclear size, normally associated with HCMV infection. Inhibition of the v-ATPase does not affect intracellular levels of viral DNA synthesis or gene expression, consistent with a defect in assembly and egress. These studies identify a novel host factor involved in virion production and a potential target for antiviral therapy.


Assuntos
Citomegalovirus/fisiologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vírion/metabolismo , Montagem de Vírus , Células Cultivadas , Citomegalovirus/metabolismo , Citomegalovirus/patogenicidade , Fibroblastos/virologia , Humanos , ATPases Vacuolares Próton-Translocadoras/genética , Vacúolos/virologia , Liberação de Vírus
19.
PLoS Pathog ; 13(5): e1006329, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28494016

RESUMO

The human cytomegalovirus major immediate early proteins IE1 and IE2 are critical drivers of virus replication and are considered pivotal in determining the balance between productive and latent infection. IE1 and IE2 are derived from the same primary transcript by alternative splicing and regulation of their expression likely involves a complex interplay between cellular and viral factors. Here we show that knockdown of the host ubiquitin-dependent segregase VCP/p97, results in loss of IE2 expression, subsequent suppression of early and late gene expression and, ultimately, failure in virus replication. RNAseq analysis showed increased levels of IE1 splicing, with a corresponding decrease in IE2 splicing following VCP knockdown. Global analysis of viral transcription showed the expression of a subset of viral genes is not reduced despite the loss of IE2 expression, including UL112/113. Furthermore, Immunofluorescence studies demonstrated that VCP strongly colocalised with the viral replication compartments in the nucleus. Finally, we show that NMS-873, a small molecule inhibitor of VCP, is a potent HCMV antiviral with potential as a novel host targeting therapeutic for HCMV infection.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Replicação do DNA , Proteínas Imediatamente Precoces/metabolismo , Transativadores/metabolismo , Replicação Viral , Acetanilidas/farmacologia , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/farmacologia , Antivirais/farmacologia , Benzotiazóis/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/farmacologia , Núcleo Celular/metabolismo , Citomegalovirus/genética , Infecções por Citomegalovirus/tratamento farmacológico , Técnicas de Silenciamento de Genes , Humanos , Proteínas Imediatamente Precoces/genética , Glicoproteínas de Membrana/metabolismo , Análise de Sequência de RNA , Transativadores/genética , Ubiquitina/metabolismo , Proteína com Valosina
20.
J Gen Virol ; 96(Pt 4): 739-751, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25406174

RESUMO

The identification of virally encoded microRNAs (miRNAs) has had a major impact on the field of herpes virology. Given their ability to target cellular and viral transcripts, and the lack of immune response to small RNAs, miRNAs represent an ideal mechanism of gene regulation during viral latency and persistence. In this review, we discuss the role of miRNAs in virus latency and persistence, specifically focusing on herpesviruses. We cover the current knowledge on miRNAs in establishing and maintaining virus latency and promoting survival of infected cells through targeting of both viral and cellular transcripts, highlighting key publications in the field. We also discuss potential areas of future research and how novel technologies may aid in determining how miRNAs shape virus latency in the context of herpesvirus infections.


Assuntos
Herpesviridae/genética , MicroRNAs/genética , Animais , Regulação Viral da Expressão Gênica , Herpesviridae/fisiologia , Humanos , RNA Viral/genética , Latência Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA