Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 379(6633): 690-694, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36795809

RESUMO

Lewis base molecules that bind undercoordinated lead atoms at interfaces and grain boundaries (GBs) are known to enhance the durability of metal halide perovskite solar cells (PSCs). Using density functional theory calculations, we found that phosphine-containing molecules have the strongest binding energy among members of a library of Lewis base molecules studied herein. Experimentally, we found that the best inverted PSC treated with 1,3-bis(diphenylphosphino)propane (DPPP), a diphosphine Lewis base that passivates, binds, and bridges interfaces and GBs, retained a power conversion efficiency (PCE) slightly higher than its initial PCE of ~23% after continuous operation under simulated AM1.5 illumination at the maximum power point and at ~40°C for >3500 hours. DPPP-treated devices showed a similar increase in PCE after being kept under open-circuit conditions at 85°C for >1500 hours.

2.
ACS Appl Mater Interfaces ; 13(32): 38432-38440, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34347421

RESUMO

Copper (Cu) incorporation is a key process for fabricating efficient CdTe-based thin-film solar cells and has been used in CdTe-based solar cell module manufacturing. Here, we investigate the effects of different Cu precursors on the performance of CdTe-based thin-film solar cells by incorporating Cu using a metallic Cu source (evaporated Cu) and ionic Cu sources (solution-processed cuprous chloride (CuCl) and copper chloride (CuCl2)). We find that ionic Cu precursors offer much better control in Cu diffusion than the metallic Cu precursor, producing better front junction quality, lower back-barrier heights, and better bulk defect property. Finally, outperforming power conversion efficiencies of 17.2 and 17.5% are obtained for devices with cadmium sulfide and zinc magnesium oxide as the front window layers, respectively, which are among the highest reported CdTe solar cells efficiencies. Our results suggest that an ionic Cu precursor is preferred as the dopant to fabricate efficient CdTe thin-film solar cells and modules.

3.
ACS Appl Mater Interfaces ; 12(46): 51337-51343, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33146989

RESUMO

Although back-surface passivation plays an important role in high-efficiency photovoltaics, it has not yet been definitively demonstrated for CdTe. Here, we present a solution-based process, which achieves passivation and improved electrical performance when very small amounts of oxidized Al3+ species are deposited at the back surface of CdTe devices. The open circuit voltage (Voc) is increased and the fill factor (FF) and photoconversion efficiency (PCE) are optimized when the total amount added corresponds to ∼1 monolayer, suggesting that the passivation is surface specific. Addition of further Al3+ species, present in a sparse alumina-like layer, causes the FF and PCE to drop as the interface layer becomes blocking to current flow. The optimized deposit increases the average baseline PCE for both Cu-free devices and devices where Cu is present as a dopant. The greatest improvement is found when the Al3+ species are deposited prior to the CdCl2 activation step and Cu is employed. In this case, the best-cell efficiency was improved from 12.6 to 14.4%. Time-resolved photoluminescence measurements at the back surface and quantum efficiency measurements performed at the maximum power point indicate that the performance enhancement is due to a reduction in the interface recombination current at the back surface.

4.
Materials (Basel) ; 12(10)2019 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-31130599

RESUMO

Nanocrystalline hydrogenated silicon (nc-Si:H) substrate configuration n-i-p solar cells have been fabricated on soda lime glass substrates with active absorber layers prepared by plasma enhanced chemical vapor deposition (PECVD) and radio frequency magnetron sputtering. The cells with nanocrystalline PECVD absorbers and an untextured back reflector serve as a baseline for comparison and have power conversion efficiency near 6%. By comparison, cells with sputtered absorbers achieved efficiencies of about 1%. Simulations of external quantum efficiency (EQE) are compared to experimental EQE to determine a carrier collection probability gradient with depth for the device with the sputtered i-layer absorber. This incomplete collection of carriers generated in the absorber is most pronounced in material near the n/i interface and is attributed to breaking vacuum between deposition of layers for the sputtered absorbers, possible low electronic quality of the nc-Si:H sputtered absorber, and damage at the n/i interface by over-deposition of the sputtered i-layer during device fabrication.

5.
J Phys Chem Lett ; 9(16): 4714-4719, 2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30066567

RESUMO

Owing to their low trap-state density, high carrier mobility, and high thermal stability, CsPbBr3 perovskite microcrystals (MCs) have attracted significant attention for applications as photodetectors (PDs). However, solution synthesis processes lead to MC films with high void density, seriously limiting the performance of the PDs. Here, a pressure-assisted annealing strategy is introduced to significantly reduce the void density and decrease the surface roughness. The resulting self-powered all-inorganic CsPbBr3 perovskite MC thick-film PDs show improved performance characteristics, with responsivities and detectivities of up to 0.206 A W-1 and 7.23 × 1012 Jones, respectively. Moreover, the on/off ratios of the devices are up to 106, and the highest linear dynamic range reaches 123.5 dB. These improved results indicate that the pressure-assisted annealing method is an effective strategy to enhance the performance of solution-synthesized perovskite MC PDs.

6.
J Phys Chem Lett ; 9(8): 2043-2048, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29620374

RESUMO

Organic-inorganic lead halide perovskite microcrystal (MC) films are attractive candidates for fabricating high-performance large-area self-powered photodetectors (PDs) because of their lower trap state density and higher carrier mobility than their polycrystalline counterparts and more suitability of synthesizing large lateral area films than their single-crystal counterparts. Here, we report on the fabrication of self-powered all-inorganic CsPbBr3 perovskite MC PDs with high detectivity, using a modified solution synthesis method. The MCs are up to about 10 µm in size, and the MC layer is also about 11 µm in thickness. Under 473 nm laser (100 mW) illumination, the CsPbBr3 MC PDs show responsivity values of up to 0.172 A W-1, detectivity values of up to 4.8 × 1012 Jones, on/off ratios of up to 1.3 × 105, and linear dynamic ranges of up to 113 dB. These performances are significantly better than those of PDs based on polycrystalline perovskite thin films and comparable with those of PDs based on perovskite single crystals.

7.
ACS Biomater Sci Eng ; 4(8): 2767-2783, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-33435002

RESUMO

This Article reports the fabrication and evaluation of single-phase, silver-doped trimagnesium phosphate hydrate (Ag-TMPH) nanosheet coatings on polyetheretherketone (PEEK), a well-known material used to fabricate orthopedic and spinal implants. While PEEK has better biomechanical compatibility with bone compared to metallic implants, it is also quite inert. Therefore, it is a common practice to coat PEEK implants with conventional calcium phosphates (CaPs) to enhance cell attachment, proliferation and differentiation. As opposed to well-studied CaP compounds, relatively less-explored magnesium phosphates (MgPs) are also becoming interesting orthopedic biomaterials and is the prime focus in this research. The novel aspects of this paper are as follows. First, we report developing TMPH coatings within minutes with the help of microwave irradiation technology. Microwave irradiation plays an important role in the coating formation with accelerated kinetics. Scanning electron microscopy (SEM) confirmed the fabrication of approximately 650 nm thick TMPH coatings. The coatings resulted in submicron level surface roughness and in vitro cell studies confirmed enhanced MC3T3 cell adhesion within 4 h on such surfaces. The coatings also resulted in significant apatite formation after immersing in simulated body fluid for 7 days. Second, multifunctionality was achieved by doping TMPH coatings with Ag, thus rendering the coatings antibacterial. The antibacterial properties were evaluated against two most common infection-causing bacterial strains-Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. The results indicated good bacterial resistance and bactericidal properties of the Ag-TMPH coatings. Third, in spite of Ag doping, the single-phase nature of the coatings were retained (without forming composite systems) with the help of the low-processing temperature of the microwave irradiation. The inductive coupled plasma technique confirmed that the doped single-phase TMPH coatings supported a uniform and controlled release of Ag+ ions over a period of 3 weeks. MTT assay evaluations and SEM micrographs confirmed no signs of cytotoxicity and healthy proliferation of cells in all cases. Quantitative real time PCR (qRT-PCR) indicated a significant rise in collagen (Col1) and osteocalcin (OCN) gene expression levels in the case of TMPH coated PEEK. Thus, microwave irradiation was successfully employed in forming multifunctional, that is, bioactive, cytocompatible, and antibacterial MgP coatings on PEEK.

8.
ChemSusChem ; 9(23): 3288-3297, 2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-27783456

RESUMO

Formamidinium lead triiodide (FAPbI3 ) is considered as an alternative to methylammonium lead triiodide (MAPbI3 ) because of its lower band gap and better thermal stability. However, owing to the large size of FA cations, it is difficult to synthesize high-quality FAPbI3 thin films without the formation of an undesirable yellow phase. Smaller sized cations, such as MA and Cs, have been successfully used to suppress the formation of the yellow phase. Whereas FA and MA lead triiodide perovskite solar cells (PVSCs) have achieved power conversion efficiencies (PCEs) higher than 20 %, the PCEs of formamidinium and cesium lead triiodide (FA1-x Csx PbI3 ) PVSCs have been only approximately 16.5 %. Herein, we report our examination of the main factors limiting the PCEs of (FA1-x Csx PbI3 ) PVSCs. We find that one of the main limiting factors could be the small grain sizes (≈120 nm), which leads to relatively short carrier lifetimes. We further find that adding a small amount of lead thiocyanate [Pb(SCN)2 ] to the precursors can enlarge the grain size of (FA1-x Csx PbI3 ) perovskite thin films and significantly increase carrier lifetimes. As a result, we are able to fabricate (FA1-x Csx PbI3 ) PVSCs with significantly improved open-circuit voltages and fill factors and, therefore, enhanced PCEs. With an optimal 0.5 mol % Pb(SCN)2 additive, the average PCE is increased from 16.18±0.50 (13.45±0.78) % to 18.16±0.54 (16.86±0.63) % for planar FA0.8 Cs0.2 PbI3 PVSCs if measured under reverse (forward) voltage scans. The champion cell registers a PCE of 19.57 (18.12) % if measured under a reverse (forward) voltage scan, which is comparable to that of the best-performing MA-containing planar FA-based lead halide PVSCs.


Assuntos
Fontes de Energia Elétrica/tendências , Energia Solar , Amidinas/química , Compostos de Cálcio/química , Césio/química , Chumbo , Óxidos/química , Tiocianatos , Titânio/química
9.
J Am Chem Soc ; 138(38): 12360-3, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27622903

RESUMO

Mixed tin (Sn)-lead (Pb) perovskites with high Sn content exhibit low bandgaps suitable for fabricating the bottom cell of perovskite-based tandem solar cells. In this work, we report on the fabrication of efficient mixed Sn-Pb perovskite solar cells using precursors combining formamidinium tin iodide (FASnI3) and methylammonium lead iodide (MAPbI3). The best-performing cell fabricated using a (FASnI3)0.6(MAPbI3)0.4 absorber with an absorption edge of ∼1.2 eV achieved a power conversion efficiency (PCE) of 15.08 (15.00)% with an open-circuit voltage of 0.795 (0.799) V, a short-circuit current density of 26.86(26.82) mA/cm(2), and a fill factor of 70.6(70.0)% when measured under forward (reverse) voltage scan. The average PCE of 50 cells we have fabricated is 14.39 ± 0.33%, indicating good reproducibility.

10.
Adv Mater ; 28(42): 9333-9340, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27571446

RESUMO

Efficient lead (Pb)-free inverted planar formamidinium tin triiodide (FASnI3 ) perovskite solar cells (PVSCs) are demonstrated. Our FASnI3 PVSCs achieved average power conversion efficiencies (PCEs) of 5.41% ± 0.46% and a maximum PCE of 6.22% under forward voltage scan. The PVSCs exhibit small photocurrent-voltage hysteresis and high reproducibility. The champion cell shows a steady-state efficiency of ≈6.00% for over 100 s.

11.
J Phys Chem A ; 110(10): 3627-32, 2006 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-16526644

RESUMO

We oxidized methanol in supercritical water at 500 degrees C to explore the influence of the water concentration (or density) on the kinetics. The rate increased as the water concentration increased from 1.8 to 5.7 mol/L. This effect of water density on the kinetics observed experimentally was quantitatively reproduced by a previously validated mechanism-based, detailed chemical kinetics model. In this model, reactions of OH radicals with methanol were the fastest methanol removal steps. The rates of these removal steps increased with water density at 500 degrees C because the OH radical concentration increased. The OH radical concentration increased with density because the rates of the steps H + H2O = OH + H2 and CH3 + H2O = OH + CH4, which produce OH radicals, increased. Thus, the main role of water in accelerating methanol oxidation kinetics at 500 degrees C is as a hydrogen donor to a radical (R) in steps such as R + H2O = OH + RH. This system provides a striking example of SCW being involved on the molecular level in the free-radical oxidation as a reactant in elementary steps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA