RESUMO
A systems-biology approach to complex disease (such as cancer) is now complementing traditional experience-based approaches, which have typically been invasive and expensive. The rapid progress in biomedical knowledge is enabling the targeting of disease with therapies that are precise, proactive, preventive, and personalized. In this paper, we summarize and classify models of systems biology and model checking tools, which have been used to great success in computational biology and related fields. We demonstrate how these models and tools have been used to study some of the twelve biochemical pathways implicated in but not unique to pancreatic cancer, and conclude that the resulting mechanistic models will need to be further enhanced by various abstraction techniques to interpret phenomenological models of cancer progression.
RESUMO
As part of a 3-wk intersession workshop funded by a National Science Foundation Expeditions in Computing award, 15 undergraduate students from the City University of New York(1) collaborated on a study aimed at characterizing the voltage dynamics and arrhythmogenic behavior of cardiac cells for a broad range of physiologically relevant conditions using an in silico model. The primary goal of the workshop was to cultivate student interest in computational modeling and analysis of complex systems by introducing them through lectures and laboratory activities to current research in cardiac modeling and by engaging them in a hands-on research experience. The success of the workshop lay in the exposure of the students to active researchers and experts in their fields, the use of hands-on activities to communicate important concepts, active engagement of the students in research, and explanations of the significance of results as the students generated them. The workshop content addressed how spiral waves of electrical activity are initiated in the heart and how different parameter values affect the dynamics of these reentrant waves. Spiral waves are clinically associated with tachycardia, when the waves remain stable, and with fibrillation, when the waves exhibit breakup. All in silico experiments were conducted by simulating a mathematical model of cardiac cells on graphics processing units instead of the standard central processing units of desktop computers. This approach decreased the run time for each simulation to almost real time, thereby allowing the students to quickly analyze and characterize the simulated arrhythmias. Results from these simulations, as well as some of the background and methodology taught during the workshop, is presented in this article along with the programming code and the explanations of simulation results in an effort to allow other teachers and students to perform their own demonstrations, simulations, and studies.