Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 25(12): 3435-3449, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37941484

RESUMO

The blue mussel (Mytilus edulis) is a suspension feeder which has been used in gut-microbiome surveys. Although raw 16S sequence data are often publicly available, unifying secondary analyses are lacking. The present work analysed raw data from seven projects conducted by one group over 7 years. Although each project had different motivations, experimental designs and conclusions, all selected samples were from the guts of M. edulis collected from a single location in Long Island Sound. The goal of this analysis was to determine which independent factors (e.g., collection date, depuration status) were responsible for governing composition and diversity in the gut microbiomes. Results indicated that whether mussels had undergone depuration, defined here as voidance of faeces in a controlled, no-food period, was the primary factor that governed gut microbiome composition. Gut microbiomes from non-depurated mussels were mixtures of resident and transient communities and were influenced by temporal factors. Resident communities from depurated mussels were influenced by the final food source and length of time host mussels were held under laboratory conditions. These findings reinforce the paradigm that gut microbiota are divided into resident and transient components and suggest that depuration status should be taken into consideration when designing and interpreting future experiments.


Assuntos
Microbioma Gastrointestinal , Mytilus edulis , Mytilus , Animais , Alimentos Marinhos
2.
Environ Microbiol ; 25(12): 2792-2806, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37661930

RESUMO

Ingestion of microplastics (MP) by suspension-feeding bivalves has been well-documented. However, it is unclear whether exposure to MP could damage the stomach and digestive gland (gut) of these animals, causing ramifications for organism and ecosystem health. Here, we show no apparent effects of nylon microfiber (MF) ingestion on the gut microbiome or digestive tissues of the blue mussel, Mytilus edulis. We exposed mussels to two low concentrations (50 and 100 particles/L) of either nylon MF or Spartina spp. particles (dried, ground marsh grass), ca. 250-500 µm in length, or a no particle control laboratory treatment for 21 days. Results showed that nylon MF, when aged in coarsely filtered seawater, developed a different microbial community than Spartina spp. particles and seawater, however, even after exposure to this different community, mussel gut microbial communities resisted disturbance from nylon MF. The microbial communities of experimental mussels clustered together in ordination and were similar in taxonomic composition and measures of alpha diversity. Additionally, there was no evidence of damage to gut tissues after ingestion of nylon MF or Spartina spp. Post-ingestive particle processing likely mediated a short gut retention time of these relatively large particles, contributing to the negligible treatment effects.


Assuntos
Microbioma Gastrointestinal , Mytilus edulis , Mytilus , Poluentes Químicos da Água , Animais , Nylons , Plásticos , Ecossistema , Poluentes Químicos da Água/análise
3.
Microb Ecol ; 81(1): 180-192, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32638043

RESUMO

Bivalves have ecological and economic importance but information regarding their associated microbiomes is lacking. As suspension feeders, bivalves capture and ingest a myriad of particles, and their digestive organs have a high throughput of particle-associated microbiota. To better understand the complement of transient and resident microbial communities, standard methods need to be developed. For example, fecal sampling could represent a convenient proxy for the gut microbiome and is simple, nondestructive, and allows for sampling of individuals through time. The goal of this study was to evaluate fecal sampling as a reliable proxy for gut microbiome assessment in the blue mussel (Mytilus edulis). Mussels were collected from the natural environment and placed into individual sterilized microcosms for 6 h to allow for fecal egestion. Feces and gut homogenates from the same individuals were sampled and subjected to 16S rRNA gene amplicon sequencing. Fecal communities of different mussels resembled each other but did not resemble gut communities. Fecal communities were significantly more diverse, in terms of amplicon sequence variant (ASV) richness and evenness, than gut communities. Results suggested a mostly transient nature for fecal microbiota. Nonetheless, mussels retained a distinct resident microbial community in their gut after fecal egestion that was dominated by ASVs belonging to Mycoplasma. The use of fecal sampling as a nondestructive substitute for direct sampling of the gut is strongly discouraged. Experiments that aim to study solely resident bivalve gut microbiota should employ an egestion period prior to gut sampling to allow time for voidance of transient microbes.


Assuntos
Fezes/microbiologia , Microbioma Gastrointestinal/genética , Mytilus edulis/microbiologia , Estômago/microbiologia , Animais , Microbiologia de Alimentos , RNA Ribossômico 16S/genética
4.
Environ Sci Technol ; 53(15): 8776-8784, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31305074

RESUMO

Microplastics (MP; 1 µm to 1 mm) of various shapes and compositions are ingested by numerous marine animals. Recently, proposals have been made to adopt bivalve molluscs as bioindicators of MP pollution. To serve as indicators of MP pollution, however, the proposed organisms should ingest, without bias, the majority of plastic particles to which they are exposed. To test this premise, eastern oysters, Crassostrea virginica, and blue mussels, Mytilus edulis, were offered variously sized polystyrene microspheres (diameters 19-1000 µm) and nylon microfibers (lengths 75-1075 × diameter 30 µm), and the proportion of each rejected in pseudofeces and egested in feces was determined. For both species, the proportion of microspheres rejected increased from ca. 10-30% for the smallest spheres to 98% for the largest spheres. A higher proportion of the largest microsphere was rejected compared with the longest microfiber, but similar proportions of microfibers were ingested regardless of length. Differential egestion of MP also occurred. As a result of particle selection, the number and types of MP found in the bivalve gut will depend upon the physical characteristics of the particles. Thus, bivalves will be poor bioindicators of MP pollution in the environment, and it is advised that other marine species be explored.


Assuntos
Crassostrea , Mytilus edulis , Poluentes Químicos da Água , Animais , Biomarcadores Ambientais , Plásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA