Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Virol ; 95(2): e28489, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36832544

RESUMO

Social distancing, mask-wearing, and travel restrictions during the COVID-19 pandemic have significantly impacted the spread of influenza viruses. The objectives of this study were to analyze the pattern of influenza virus circulation with respect to that of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Bulgaria during the 2021-2022 season and to perform a phylogenetic/molecular analysis of the hemagglutinin (HA) and neuraminidase (NA) sequences of representative influenza strains. Influenza infection was confirmed using real-time reverse transcription polymerase chain reaction in 93 (4.2%) of the 2193 patients with acute respiratory illness tested wherein all detected viruses were subtyped as A(H3N2). SARS-CoV-2 was identified in 377 (24.3%) of the 1552 patients tested. Significant differences in the incidence of influenza viruses and SARS-CoV-2 were found between individual age groups, outpatients/inpatients, and in the seasonal distribution of cases. Two cases of coinfections were identified. In hospitalized patients, the Ct values of influenza viruses at admission were lower in adults aged ≥65 years (indicating higher viral load) than in children aged 0-14 years (p < 0.05). In SARS-CoV-2-positive inpatients, this association was not statistically significant. HA genes of all A(H3N2) viruses analyzed belonged to subclade 3C.2a1b.2a. The sequenced viruses carried 11 substitutions in HA and 5 in NA, in comparison to the vaccine virus A/Cambodia/e0826360/2020, including several substitutions in the HA antigenic sites B and C. This study revealed extensive changes in the typical epidemiology of influenza infection, including a dramatic reduction in the number of cases, diminished genetic diversity of circulating viruses, changes in age, and seasonal distribution of cases.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Adulto , Criança , Humanos , Vírus da Influenza A Subtipo H3N2/genética , SARS-CoV-2/genética , Estações do Ano , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Bulgária/epidemiologia , Filogenia , Prevalência , Pandemias , COVID-19/epidemiologia , RNA Viral/genética , Análise de Sequência de DNA , Hemaglutininas , Neuraminidase/genética
2.
Virus Genes ; 57(5): 401-412, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34156583

RESUMO

Influenza viruses have a high potential for genetic changes. The objectives of this study were to analyse influenza virus circulation in Bulgaria during the 2019/2020 season, to perform a phylogenetic and molecular analyses of the haemagglutinin (HA) and neuraminidase (NA) sequences of representative influenza strains, and to identify amino acid substitutions compared to the current vaccine strains. Seasonal influenza viruses A(H3N2), A(H1N1)pdm09 and B/Victoria-lineage were detected using a real-time RT-PCR in 323 (23.3%), 149 (10.7%) and 138 (9.9%) out of 1387 patient samples studied, respectively. The HA genes of A(H3N2) viruses analysed belonged to clades 3C.3a (21 strains) and 3C.2a (5 strains): subclades 3C.2a1b + T131K, 3C.2a1b + T135K-B and 3C.2a1b + T135K-A. The clade 3C.3a and subclade 3C.2a1b viruses carried 5 and 14-17 substitutions in HA, as well as 3 and 9 substitutions in NA, respectively, in comparison with the A/Kansas/14/2017 vaccine virus, including some substitutions in the HA antigenic sites A, B, C and E. All 21 A(H1N1)pdm09 viruses sequenced fell into 6B.1A5A subclade. Amino acid sequence analysis revealed the presence of 7-11 substitutions in HA, compared to the A/Brisbane/02/2018 vaccine virus, three of which occurred in antigenic site Sb, along with 6-9 changes at positions in NA. All 10 B/Victoria-lineage viruses sequenced belonged to clade 1A with a triple deletion in HA1 (genetic group 1A(Δ3)B) and carried 7 and 3 substitutions in HA and NA, respectively, with respect to the B/Colorado/06/2017 vaccine virus. The results of this study confirm the rapid evolution of influenza viruses and the need for continuous antigenic and genetic surveillance.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Influenza Humana/genética , Neuraminidase/genética , Orthomyxoviridae/genética , Substituição de Aminoácidos/genética , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/patogenicidade , Vacinas contra Influenza/genética , Vacinas contra Influenza/uso terapêutico , Influenza Humana/virologia , Orthomyxoviridae/classificação , Orthomyxoviridae/patogenicidade , Filogenia , Estações do Ano
3.
J Med Microbiol ; 69(7): 986-998, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32459617

RESUMO

Introduction. Influenza viruses evolve rapidly and change their antigenic characteristics, necessitating biannual updates of flu vaccines.Aim. The aim of this study was to characterize influenza viruses circulating in Bulgaria during the 2018/2019 season and to identify amino acid substitutions in them that might impact vaccine effectiveness.Methodology. Typing/subtyping of influenza viruses were performed using real-time Reverse Transcription-PCR (RT-PCR) and results of phylogenetic and amino acid sequence analyses of influenza strains are presented.Results. A(H1N1)pdm09 (66 %) predominated over A(H3N2) (34 %) viruses, with undetected circulation of B viruses in the 2018/2019 season. All A(H1N1)pdm09 viruses studied fell into the recently designated 6B.1A subclade with over 50 % falling in four subgroups: 6B.1A2, 6B.1A5, 6B.1A6 and 6B.1A7. Analysed A(H3N2) viruses belonged to subclades 3C.2a1b and 3C.2a2. Amino acid sequence analysis of 36 A(H1N1)pdm09 isolates revealed the presence of six-ten substitutions in haemagglutinin (HA), compared to the A/Michigan/45/2015 vaccine virus, three of which occurred in antigenic sites Sa and Cb, together with four-nine changes at positions in neuraminidase (NA), and a number of substitutions in internal proteins. HA1 D222N substitution, associated with increased virulence, was identified in two A(H1N1)pdm09 viruses. Despite the presence of several amino acid substitutions, A(H1N1)pdm09 viruses remained antigenically similar to the vaccine virus. The 28 A(H3N2) viruses characterized carried substitutions in HA, including some in antigenic sites A, B, C and E, in NA and internal protein sequences.Conclusion. The results of this study showed the genetic diversity of circulating influenza viruses and the need for continuous antigenic and molecular surveillance.


Assuntos
Vírus da Influenza A/genética , Vacinas contra Influenza/genética , Influenza Humana/genética , Sequência de Aminoácidos/genética , Substituição de Aminoácidos/genética , Antígenos Virais/genética , Bulgária/epidemiologia , Monitoramento Epidemiológico , Evolução Molecular , Variação Genética/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Hemaglutininas , História do Século XXI , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A/imunologia , Influenza Humana/história , Influenza Humana/virologia , Neuraminidase/genética , Filogenia , RNA Viral/genética , Estações do Ano , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA