Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dalton Trans ; 53(22): 9262-9266, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38776119

RESUMO

First-of-a-kind temperature-controlled electron pulse radiolysis experiments facilitated the radiation-induced formation of Am(IV) in concentrated (6.0 M) HNO3, and enabled the derivation of Arrhenius and Eyring activation parameters for instigating the radical reaction between NO3˙ and Am(III).

2.
Inorg Chem ; 63(18): 8092-8098, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38657081

RESUMO

Careful manipulation of the plutonium oxidation states is essential in the study and utilization of its rich redox chemistry. To achieve this level of control, a comprehensive mechanistic understanding of radiation-induced plutonium redox chemistry is critical due to the unavoidable exposure of plutonium to ionizing radiation fields, both inherent and from in-process applications. To this end, we have developed an experimentally evaluated multiscale computer model for the prediction of gamma radiation-induced Pu(IV) redox chemistry in concentrated nitric acid solutions (1.0, 3.0, and 6.0 M). Under these acidic, aqueous solution conditions, cobalt-60 gamma irradiation afforded marginal net conversion of Pu(IV) to Pu(VI), the extent of which was dependent on the concentration of HNO3 and absorbed gamma dose. Multiscale calculations, which are in excellent agreement with experimental data, indicate that this observation is due to a combination of inherent plutonium disproportionation reactions and several radiation-induced processes, including redox cycling between Pu(IV) and Pu(III), as achieved by the reduction of Pu(IV) by nitrous acid and hydrogen peroxide, the oxidation of Pu(III) by nitrate and hydroxyl radicals, and the sequential oxidation of Pu(IV) to Pu(V) and Pu(VI) by the remaining available yield of nitrate radicals.

3.
Dalton Trans ; 53(16): 6881-6891, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38407412

RESUMO

A systematic study of the impact on the chemical reactivity of the oxidising n-dodecane radical cation (RH˙+) with f-element complexed 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) has been undertaken utilizing time-resolved electron pulse radiolysis/transient absorption spectroscopy and high-level quantum mechanical calculations. Lanthanide ion complexed species, [Ln((HEH[EHP])2)3], exhibited vastly increased reactivity (over 10× faster) in comparison to the non-complexed ligand in n-dodecane solvent, whose rate coefficient was k = (4.66 ± 0.22) × 109 M-1 s-1. Similar reactivity enhancement was also observed for the corresponding americium ion complex, k = (5.58 ± 0.30) × 1010 M-1 s-1. The vastly increased reactivity of these f-element complexes was not due to simple increased diffusion-control of these reactions; rather, enhanced hole transfer mechanisms for the complexes were calculated to become energetically more favourable. Interestingly, the observed reactivity trend with lanthanide ion size was not linear; instead, the rate coefficients showed an initial increase (Lu to Yb) followed by a decrease (Tm to Ho), followed by another increase (Dy to La). This behaviour was excellently predicted by the calculated reaction volumes of these complexes. Complementary cobalt-60 gamma irradiations for select lanthanide complexes demonstrated that the measured kinetic differences translated to increased ligand degradation at steady-state timescales, affording ∼38% increase in ligand loss of a 1 : 1 [La((HEH[EHP])2)3] : HEH[EHP] ratio system.

4.
Sci Rep ; 13(1): 17855, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857726

RESUMO

The complexation of trivalent lanthanides and minor actinides (Am3+, Cm3+, and Cf3+) by the acyclic aminopolycarboxylate chelators 6,6'-((ethane-1,2-diylbis-((carboxymethyl)azanediyl))bis-(methylene))dipicolinic acid (H4octapa) and 6,6'-((((4-(1-(2-(2-(2-hydroxyethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-yl)pyridine-2,6-diyl)bis-(methylene))bis-((carboxymethyl)azanediyl))bis-(methylene)) dipicolinic acid (H4pypa-peg) were studied using potentiometry, spectroscopy, competitive complexation liquid-liquid extraction, and ab initio molecular dynamics simulations. Two studied reagents are strong multidentate chelators, well-suited for applications seeking radiometal coordination for in-vivo delivery and f-element isolation. The previously reported H4octapa forms a compact coordination packet, while H4pypa-peg is less sterically constrained due to the presence of central pyridine ring. The solubility of H4octapa is limited in a non-complexing high ionic strength perchlorate media. However, the introduction of a polyethylene glycol group in H4pypa-peg increased the solubility without influencing its ability to complex the lanthanides and minor actinides in solution.

5.
Phys Chem Chem Phys ; 25(24): 16404-16413, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37294439

RESUMO

The impact of trivalent lanthanide ion complexation and temperature on the chemical reactivity of N,N,N',N'-tetraoctyl diglycolamide (TODGA) with the n-dodecane radical cation (RH˙+) has been measured by electron pulse radiolysis and evaluated by quantum mechanical calculations. Additionally, Arrhenius parameters were determined for the reaction of the non-complexed TODGA ligand with the RH˙+ from 10-40 °C, giving the activation energy (Ea = 17.43 ± 1.64 kJ mol-1) and pre-exponential factor (A = (2.36 ± 0.05) × 1013 M-1 s-1). The complexation of Nd(III), Gd(III), and Yb(III) ions by TODGA yielded [LnIII(TODGA)3(NO3)3] complexes that exhibited significantly increased reactivity (up to 9.3× faster) with the RH˙+, relative to the non-complexed ligand: k([LnIII(TODGA)3(NO3)3] + RH˙+) = (8.99 ± 0.93) × 1010, (2.88 ± 0.40) × 1010, and (1.53 ± 0.34) × 1010 M-1 s-1, for Nd(III), Gd(III), and Yb(III) ions, respectively. The rate coefficient enhancement measured for these complexes exhibited a dependence on atomic number, decreasing as the lanthanide series was traversed. Preliminary reaction free energy calculations-based on a model [LnIII(TOGDA)]3+ complex system-indicate that both electron/hole and proton transfer reactions are energetically unfavorable for complexed TODGA. Furthermore, complementary average local ionization energy calculations showed that the most reactive region of model N,N,N',N'-tetraethyl diglycolamide (TEDGA) complexes, [LnIII(TEGDA)3(NO3)3], toward electrophilic attack is for the coordinated nitrate (NO3-) counter anions. Therefore, it is possible that radical reactions with the complexed NO3- counter anions dominate the differences in rates seen for the [LnIII(TODGA)3(NO3)3] complexes, and are likely responsible for the reported radioprotection in the presence of TODGA complexes.

6.
J Phys Chem B ; 127(17): 3931-3938, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37084416

RESUMO

The octadentate hydroxypyridinone ligand 3,4,3-LI(1,2-HOPO) (abbreviated as HOPO) has been identified as a promising candidate for both chelation and f-element separation technologies, two applications that require optimal performance in radiation environments. However, the radiation robustness of HOPO is currently unknown. Here, we employ a combination of time-resolved (electron pulse) and steady-state (alpha self-radiolysis) irradiation techniques to elucidate the basic chemistry of HOPO and its f-element complexes in aqueous radiation environments. Chemical kinetics were measured for the reaction of HOPO and its Nd(III) ion complex ([NdIII(HOPO)]-) with key aqueous radiation-induced radical transients (eaq-, H• atom, and •OH and NO3• radicals). The reaction of HOPO with the eaq- is believed to proceed via reduction of the hydroxypyridinone moiety, while transient adduct spectra indicate that reactions with the H• atom and •OH and NO3• radicals proceeded by addition to HOPO's hydroxypyridinone rings, potentially allowing for the generation of an extensive suite of addition products. Complementary steady-state 241Am(III)-HOPO complex ([241AmIII(HOPO)]-) irradiations showed the gradual release of 241Am(III) ions with increasing alpha dose up to 100 kGy, although complete ligand destruction was not observed.

7.
Inorg Chem ; 61(28): 10822-10832, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35776877

RESUMO

Despite the significant impact of radiation-induced redox reactions on the accessibility and lifetimes of actinide oxidation states, fundamental knowledge of aqueous actinide metal ion radiation chemistry is limited, especially for the late actinides. A quantitative understanding of these intrinsic radiation-induced processes is essential for investigating the fundamental properties of these actinides. We present here a picosecond electron pulse reaction kinetics study into the radiation-induced redox chemistry of trivalent berkelium (Bk(III)) and californium (Cf(III)) ions in acidic aqueous solutions at ambient temperature. New and first-of-a-kind, second-order rate coefficients are reported for the transient radical-induced reduction of Bk(III) and Cf(III) by the hydrated electron (eaq-) and hydrogen atom (H•), demonstrating a significant reactivity (up to 1011 M-1 s-1) indicative of a preference of these metals to adopt divalent states. Additionally, we report the first-ever second-order rate coefficients for the transient radical-induced oxidation of these elements by a reaction with hydroxyl (•OH) and nitrate (NO3•) radicals, which also exhibited fast reactivity (ca. 108 M-1 s-1). Transient Cf(II), Cf(IV), and Bk(IV) absorption spectra are also reported. Overall, the presented data highlight the existence of rich, complex, intrinsic late actinide radiation-induced redox chemistry that has the potential to influence the findings of other areas of actinide science.

8.
Phys Chem Chem Phys ; 23(43): 24589-24597, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34710211

RESUMO

Specialized extractant ligands - such as tri-butyl phosphate (TBP), N,N-di-(2-ethylhexyl)butyramide (DEHBA), and N,N-di-2-ethylhexylisobutryamide (DEHiBA) - have been developed for the recovery of uranium from used nuclear fuel by reprocessing solvent extraction technologies. These ligands must function in the presence of an intense multi-component radiation field, and thus it is critical that their radiolytic behaviour be thoroughly evaluated. This is especially true for their metal complexes, where there is negligible information on the influence of complexation on radiolytic reactivity, despite the prevalence of metal complexes in used nuclear fuel reprocessing solvent systems. Here we present a kinetic investigation into the effect of uranyl (UO22+) complexation on the reaction kinetics of the dodecane radical cation (RH˙+) with TBP, DEHBA, and DEHiBA. Complexation had negligible effect on the reaction of RH˙+ with TBP, for which a second-order rate coefficient (k) of (1.3 ± 0.1) × 1010 M-1 s-1 was measured. For DEHBA and DEHiBA, UO22+ complexation afforded an increase in their respective rate coefficients: k(RH˙+ + [UO2(NO3)2(DEHBA)2]) = (2.5 ± 0.1) × 1010 M-1 s-1 and k(RH˙+ + [UO2(NO3)2(DEHiBA)2]) = (1.6 ± 0.1) × 1010 M-1 s-1. This enhancement with complexation is indicative of an alternative RH˙+ reaction pathway, which is more readily accessible for [UO2(NO3)2(DEHBA)2] as it exhibited a much larger kinetic enhancement than [UO2(NO3)2(DEHiBA)2], 2.6× vs. 1.4×, respectively. Complementary quantum mechanical calculations suggests that the difference in reaction kinetic enhancement between TBP and DEHBA/DEHiBA is attributed to a combination of reaction pathway (electron/hole transfer vs. proton transfer) energetics and electron density distribution, wherein attendant nitrate counter anions effectively 'shield' TBP from RH˙+ electron transfer processes.

9.
Dalton Trans ; 50(31): 10853-10859, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34296716

RESUMO

Insight into the effects of radiolytic processes on the actinides is critical for advancing our understanding of their solution chemistry because the behaviour of these elements cannot be easily separated from the influence of their inherent radiation field. However, minimal information exists on the radiation-induced redox behaviour of curium (Cm), a key trivalent transuranic element present in used nuclear fuel and frequently used as an alpha radiation source. Here we present a kinetic study on the aqueous redox reactions of Cm(iii) with radicals generated through the radiolysis of aqueous media. In particular, we probe reaction kinetics in nitric acid solutions that are used as the aqueous phase component of used nuclear fuel reprocessing solvent systems. Second-order rate coefficients (k) were measured for the reaction of Cm(iii) with the hydrated electron (eaq-, k = (1.25 ± 0.03) × 1010 M-1 s-1), hydrogen atom (H˙, k = (5.16 ± 0.37) × 108 M-1 s-1), hydroxyl radical (˙OH, k = (1.69 ± 0.24) × 109 M-1 s-1), and nitrate radical (NO3˙, k = (4.83 ± 0.09) × 107 M-1 s-1). Furthermore, the first-ever Cm(ii) absorption spectrum (300-700 nm) is also reported. These kinetic data dispel the status quo notion of Cm(iii) possessing little to no redox chemistry in aqueous solution, and suggest that the resulting Cm(ii) and Cm(iv) transients could exist in irradiated aqueous solutions and be available to undergo subsequent redox chemistry with other solutes.

10.
Inorg Chem ; 60(9): 6125-6134, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33866779

RESUMO

The separation of trivalent lanthanides and actinides is challenging because of their similar sizes and charge densities. S-donating extractants have shown significant selectivity for trivalent actinides over lanthanides, with single-stage americium/lanthanide separation efficiencies for some thiol-based extractants reported at >99.999%. While such separations could transform the nuclear waste management landscape, these systems are often limited by the hydrolytic and radiolytic stability of the extractant. Progress away from thiol-based systems is limited by the poorly understood and complex interactions of these extractants in organic phases, where molecular aggregation and micelle formation obfuscates assessment of the metal-extractant coordination environment. Because S-donating thioethers are generally more resistant to hydrolysis and oxidation and the aqueous phase coordination chemistry is anticipated to lack complications brought on by micelle formation, we have considered three thioethers, 2,2'-thiodiacetic acid (TDA), (2R,5S)-tetrahydrothiophene-2,5-dicarboxylic acid, and 2,5-thiophenedicarboxylic acid (TPA), as possible trivalent actinide selective reagents. Formation constants, extended X-ray absorption fine structure spectroscopy, and computational studies were completed for thioether complexes with a variety of trivalent lanthanides and actinides including Nd, Eu, Tb, Am, Cm, Bk, and Cf. TPA was found to have moderately higher selectivity for the actinides because of its ability to bind actinides in a different manner than lanthanides, but the utility of TPA is limited by poor water solubility and high rigidity. While significant competition with water for the metal center limits the efficacy of aqueous-based thioethers for separations, the characterization of these solution-phase, S-containing lanthanide and actinide complexes is the most comprehensively available in the literature to date. This is due to the breadth of lanthanides and actinides considered as well as the techniques deployed and serves as a platform for the further development of S-containing reagents for actinide separations. Additionally, this paper reports on the first bond lengths for Cf and Bk with a neutral S donor.

11.
Phys Chem Chem Phys ; 23(2): 1343-1351, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33367347

RESUMO

The candidate An(iii)/Ln(iii) separation ligand hexa-n-octylnitrilo-triacetamide (HONTA) was irradiated under envisioned SELECT (Solvent Extraction from Liquid waste using Extractants of CHON-type for Transmutation) process conditions (n-dodecane/0.1 M HNO3) using a solvent test loop in conjunction with cobalt-60 gamma irradiation. The extent of HONTA radiolysis and complementary degradation product formation was quantified by HPLC-ESI-MS/MS. Further, the impact of HONTA radiolysis on process performance was evaluated by measuring the change in 243Am and 154Eu distribution ratios as a function of absorbed gamma dose. HONTA was found to decay exponentially with increasing dose, affording a dose coefficient of d = (4.48 ± 0.19) × 10-3 kGy-1. Multiple degradation products were detected by HPLC-ESI-MS/MS with dioctylamine being the dominant quantifiable species. Both 243Am and 154Eu distribution ratios exhibited an induction period of ∼70 kGy for extraction (0.1 M HNO3) and back-extraction (4.0 M HNO3) conditions, after which both values decreased with absorbed dose. The decrease in distribution ratios was attributed to a combination of the destruction of HONTA and ingrowth of dioctylamine, which is capable of interfering in metal ion complexation. The loss of HONTA with absorbed gamma dose was predominantly attributed to its reaction with the n-dodecane radical cation (R˙+). These R˙+ reaction kinetics were measured for HONTA and its 241Am and 154Eu complexes using picosecond pulsed electron radiolysis techniques. All three second-order rate coefficients (k) were essentially diffusion limited in n-dodecane indicating a significant reaction pathway: k(HONTA + R˙+) = (7.6 ± 0.8) × 109 M-1 s-1, k(Am(HONTA)2 + R˙+) = (7.1 ± 0.7) × 1010 M-1 s-1, and k(Eu(HONTA)2 + R˙+) = (9.5 ± 0.5) × 1010 M-1 s-1. HONTA-metal ion complexation afforded an order-of-magnitude increase in rate coefficient. Nanosecond time-resolved measurements showed that both direct and indirect HONTA radiolysis yielded the short-lived (<100 ns) HONTA radical cation and a second long-lived (µs) species identified as the HONTA triplet excited state. The latter was confirmed by a series of oxygen quenching picosecond pulsed electron measurements, affording a quenching rate coefficient of k(3[HONTA]* + O2) = 2.2 × 108 M-1 s-1. Overall, both the HONTA radical cation and triplet excited state are important precursors to the suite of measured HONTA degradation products.

12.
Inorg Chem ; 59(1): 138-150, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31430129

RESUMO

The trivalent f-element coordination chemistry of a novel aminopolycarboxylate complexant was investigated. The novel reagent is an octadentate complexant that resembles diethylenetriamine-N,N,N',N″,N″-pentaacetic acid (DTPA), but a single N-acetate pendant arm was substituted with a N-2-pyrazinylmethyl functional group. Thermodynamic studies of ligand protonation and trivalent lanthanide, americium and curium, complexation by N-2-pyrazinylmethyldiethylenetriamine-N,N',N″,N″-tetraacetic acid (DTTA-PzM) emphasize the strong electron withdrawing influence of the N-2-pyrazinylmethyl group. Specifically, DTTA-PzM is more acidic compared to a N-2-pyridinylmethyl-substituted structural equivalent, DTTA-PyM, with a substantial lowering of pK7, corresponding to the protonation of a second aliphatic amine site. The participation of the pyrizyl nitrogen in the metal ion coordination sphere is evident from the fluorescence lifetime decay measurements of metal hydration and the interpretation of the stability constants for ML- and MHL(aq) complexes. The overall conditional stability constants for the trivalent f-element complexation by DTTA-PzM complexes decrease, relative to DTTA-PyM, as expected based on the lower basicity of pyrazine in water relative to pyridine. Replacement of the N-2-pyridinylmethyl group with N-2-pyrazinylmethyl, while enhancing the total acidity of DTTA-PzM, also reduces its softness, as manifested by a small lowering of ß101Am/Nd and liquid-liquid separation of trivalent lanthanides from trivalent americium. Despite this, the 4f/5f separation is doubled when DTTA-PzM replaces DTPA as an aqueous complexant in solvent extraction.

13.
Dalton Trans ; 48(38): 14450-14460, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31524896

RESUMO

N,N-di-(2-ethylhexyl)butyramide (DEHBA) has been proposed as part of a hydro-reprocessing solvent extraction system for the co-extraction of uranium and plutonium from spent nuclear fuel, owing to its selectivity for hexavalent uranium and tetravalent plutonium. However, there is a critical lack of quantitative understanding regarding the impact of chemical environment on the radiation chemistry of DEHBA, and how this would affect process performance. Here we present a systematic investigation into the radiolytic degradation of DEHBA in a range of n-dodecane solvent system formulations, where we subject DEHBA to gamma irradiation, measure reaction kinetics, ligand integrity, degradation product formation, and investigate solvent system performance through uranium and plutonium extraction and strip distribution ratios. The rate of DEHBA degradation in n-dodecane was found to be slow (G = -0.31 ± 0.02 µmol J-1) but enhanced upon contact with the oxidizing conditions of the investigated solvent systems (organic-only, or in contact with either 0.1 or 3.0 M aqueous nitric acid). Two major degradation products were identified in the organic phase, bis-2-ethylhexylamine (b2EHA) and N-(2-ethylhexyl)butyramide (MEHBA), resulting from the cleavage of C-N bonds, and could account for the total loss of DEHBA up to ∼300 kGy for organic-only conditions. Both b2EHA and MEHBA were also found to be susceptible to radiolytic degradation, having G-values of -0.12 ± 0.01 and -0.08 ± 0.01 µmol J-1, respectively. Solvent extraction studies showed: (i) negligible change in uranium extraction and stripping with increasing absorbed dose; and (ii) plutonium extraction and retention exhibits complex dependencies on absorbed dose and chemical environment. Organic-only conditions afforded enhanced plutonium extraction and retention attributed to b2EHA, while acid contacts inhibited this effect and promoted significant plutonium retention for the highest acidity. Overall it has been demonstrated that chemical environment during irradiation has a significant influence on the extent of DEHBA degradation and plutonium retention.

14.
Inorg Chem ; 58(13): 8551-8559, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31184869

RESUMO

The recent development of facile methods to oxidize trivalent americium to its higher valence states holds promise for the discovery of new chemistries and critical insight into the behavior of the 5f electrons. However, progress in understanding high-valent americium chemistry has been hampered by americium's inherent ionizing radiation field and its concomitant effects on americium redox chemistry. Any attempt to understand high-valent americium reduction and/or disproportionation must account for the effects of these radiolytic processes. Therefore, we present a complete, quantitative, mechanistic description of the radiation-induced redox chemistry of the americyl oxidation states in aerated, aqueous nitric acid, as a function of radiation quality (type and energy) and solution composition using multiscale modeling calculations supported by experiment. The reduction of Am(VI) to Am(V) was found to be most sensitive to the effects of ionizing radiation, undergoing rapid reductions with the steady-state products of aqueous HNO3 radiolysis, i.e., HNO2, H2O2, and HO2•, which dictated its practical lifetime under acidic conditions. In contrast, Am(V) is only susceptible to radiolytic oxidation, mainly through its reactions with NO3•, and is notably radiation-resistant with respect to direct one-electron reduction to produce Am(IV). Our multiscale modeling calculations predict that the lifetime of Am(V) is dictated by its rate of disproportionation, 2AmO2+ + 4Haq+ → AmO22+ + Am4+ + 2H2O, with a fourth-order dependence on [Haq+] in agreement with previous experimental findings, giving an optimized rate coefficient of k = 2.27 × 10-6 M-5 s-1. This disproportionation initially produces Am(IV) and Am(VI) species, but the lack of any spectroscopic evidence in our study for Am(IV) suggests that solvent reduction of this cation occurs rapidly. The ultimate product of all the Am(VI)/Am(V) irradiations is Am(III), which shows great stability in an irradiation field.

15.
Chem Commun (Camb) ; 55(28): 4035-4038, 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30887982

RESUMO

We present here the electrochemical oxidation of Am(iii) to AmVO2+ and AmVIO22+ in pH 1 nitric acid using a mesoporous tin-doped indium oxide electrode modified with a covalently attached dipyrazinylpyridine ligand. The applied potential affects the distribution of Am oxidation products. At potential 1.8 V, only Am(v) is observed, while increasing the potential to as much as 2.0 V, results in oxidation of Am(iii) to Am(v) and subsequent oxidation of Am(v) to Am(vi). At applied potentials >2.0 V, Am(iii) is oxidized to Am(v), while Am(vi) is reduced to Am(v). The latter reduction reaction is likely due to the increased rate of hydrogen peroxide formation from the 2-electron oxidation of water at the electrode at these high potentials. The development of future ligand modified electrodes for actinide oxidations must consider how they facilitate Am oxidations while disfavoring unwanted or competing reactions.

16.
Chemistry ; 25(10): 2545-2555, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30444030

RESUMO

The thermodynamic influence of a pre-organized N-donor group on the coordination of trivalent actinides and lanthanides by an aqueous aminopolycarboxylate complexant has been investigated. The synthesized reagent, N-2-methylpicolinate-ethylenediamine-N,N',N'-triacetic acid (EDTA-Mpic), resembles ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA) with a single acetate pendant arm replaced by a 6-carboxypyridin-2-ylmethyl group. The rigid N-donor picolinate functionality has a profound impact on ligand protonation and trivalent f element complexation equilibria, as demonstrated by potentiometric, spectroscopic, and liquid/liquid metal-partitioning studies as well as by molecular dynamics calculations. Relative to diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA), the ability to preferentially bind trivalent actinides over trivalent lanthanides was moderately lowered due to the presence of the N-(6-carboxypyridin-2-ylmethyl) substituent. The structural modification substantially amplifies the total ligand acidity of EDTA-Mpic. As a result the complexant sustains the metal complexation and efficient An3+ /Ln3+ differentiation in aqueous mixtures of unprecedented acidity for this class of reagents.

17.
Inorg Chem ; 57(3): 1373-1385, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29303253

RESUMO

The novel metal chelator N-2-(pyridylmethyl)diethylenetriamine-N,N',N″,N″-tetraacetic acid (DTTA-PyM) was designed to replace a single oxygen-donor acetate group of the well-known aminopolycarboxylate complexant diethylenetriamine-N,N,N',N″,N″-pentaacetic acid (DTPA) with a nitrogen-donor 2-pyridylmethyl. Potentiometric, spectroscopic, computational, and radioisotope distribution methods show distinct differences for the 4f and 5f coordination environments and enhanced actinide binding due to the nitrogen-bearing heterocyclic moiety. The Am3+, Cm3+, and Ln3+ complexation studies for DTTA-PyM reveal an enhanced preference, relative to DTPA, for trivalent actinide binding. Fluorescence studies indicate no changes to the octadentate coordination of trivalent curium, while evidence of heptadentate complexation of trivalent europium is found in mixtures containing EuHL(aq) complexes at the same aqueous acidity. The denticity change observed for Eu3+ suggests that complex protonation occurs on the pyridyl nitrogen. Formation of the CmHL(aq) complex is likely due to the protonation of an available carboxylate group because the carbonyl oxygen can maintain octadentate coordination through a rotation. The observed suppressed protonation of the pyridyl nitrogen in the curium complexes may be attributed to stronger trivalent actinide binding by DTTA-PyM. Density functional theory calculations indicate that added stabilization of the actinide complexes with DTTA-PyM may originate from π-back-bonding interactions between singly occupied 5f orbitals of Am3+ and the pyridyl nitrogen. The differences between the stabilities of trivalent actinide chelates (Am3+, Cm3+) and trivalent lanthanide chelates (La3+-Lu3+) are observed in liquid-liquid extraction systems, yielding unprecedented 4f/5f differentiation when using DTTA-PyM as an aqueous holdback reagent. In addition, the enhanced nitrogen-donor softness of the new DTTA-PyM chelator was perturbed by adding a fluorine onto the pyridine group. The comparative characterization of N-(3-fluoro-2-pyridylmethyl)diethylenetriamine-N,N',N″,N″-tetraacetic acid (DTTA-3-F-PyM) showed subdued 4f/5f differentiation due to the presence of this electron-withdrawing group.

18.
Dalton Trans ; 47(4): 1092-1105, 2018 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29264611

RESUMO

The novel metal ion complexant N-butyl-2-acetamide-diethylenetriamine-N,N',N'',N''-tetraacetic acid (DTTA-BuA) uses an amide functionalization to increase the total ligand acidity and attain efficient 4f/5f differentiation in low pH conditions. The amide, when located on the diethylenetriamine platform containing four acetate pendant arms maintains the octadentate coordination sphere for all investigated trivalent f-elements. This compact coordination environment inhibits the protonation of LnL- complexes, as indicated by lower K111 constants relative to the corresponding protonation site of the free ligand. For actinide ions, the enhanced stability of AnL- lowers the K111 for americium and curium beyond the aptitude of potentiometric detection. Density functional theory computations indicate the difference in the back-donation ability of Am3+ and Eu3+ f-orbitals is mainly responsible for stronger proton affinity of EuL- compared to AmL-. The measured stability constants for the formation of AmL- and CmL- complexes are consistently higher, relative to ML- complexes with lanthanides of similar charge density. When compared with the conventional aminopolycarboxylate diethylenetriamine pentaacetic acid (DTPA), the modified DTTA-BuA complexant features higher ligand acidity and the important An3+/Ln3+ differentiation when deployed on a liquid-liquid distribution platform.

19.
Appl Spectrosc ; 71(12): 2608-2615, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28671479

RESUMO

Optical absorption features for [Formula: see text] and [Formula: see text] transitions of trivalent americium ion were investigated in a wide range of aqueous combinations of perchloric and nitric acids (0.1-6.0 mol L-1). The developed qualitative matrix of extinction coefficients measures the cumulative impact of increasing electrolyte content, changes in the hydration zones of americium ion, and inner-sphere perturbation by nitrate on the absorbance. The effects of growing complexity of aqueous electrolyte medium were highlighted for the [Formula: see text] transition. Spectroscopy indicates the perturbation of the inner hydration sphere of trivalent f-element by one nitrate ligand.

20.
Inorg Chem ; 56(14): 8295-8301, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28661685

RESUMO

The rate of reduction of hexavalent 243Am due to self-radiolysis was measured across a range of total americium and nitric acid concentrations. These so-called autoreduction rates exhibited zero-order kinetics with respect to the concentration of hexavalent americium, and pseudo-first-order kinetics with respect to the total concentration of americium. However, the rate constants did vary with nitric acid concentration, resulting in values of 0.0048 ± 0.0003, 0.0075 ± 0.0005, and 0.0054 ± 0.0003 h-1 for 1.0, 3.0, and 6.5 M HNO3, respectively. This indicates that reduction is due to reaction of hexavalent americium with the radiolysis products of total americium decay. The concentration changes of Am(III), Am(V), and Am(VI) were determined by UV-vis spectroscopy. The Am(III) molar extinction coefficients are known; however, the unknown values for the Am(V) and Am(VI) absorbances across the studied range of nitric acid concentrations were determined by sensitivity analysis in which a mass balance with the known total americium concentration was obtained. The new extinction coefficients and reduction rate constants have been tabulated here. Multiscale radiation chemical modeling using a reaction set with both known and optimized rate coefficients was employed to achieve excellent agreement with the experimental results, and indicates that radiolytically produced nitrous acid from nitric acid radiolysis and hydrogen peroxide from water radiolysis are the important reducing agents. Since these species also react with each other, modeling indicated that the highest concentrations of these species available for Am(VI) reduction occurred at 3.0 M HNO3. This is in agreement with the empirical finding that the highest rate constant for autoreduction occurred at the intermediate acid concentration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA