Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 8(24): eabn8152, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35704575

RESUMO

Bacteria organize in a variety of collective states, from swarming-rapid surface exploration, to biofilms-highly dense immobile communities attributed to stress resistance. It has been suggested that biofilm and swarming are oppositely controlled, making this transition particularly interesting for understanding the ability of bacterial colonies to adapt to challenging environments. Here, the swarm to biofilm transition is studied in Bacillus subtilis by analyzing the bacterial dynamics both on the individual and collective scales. We show that both biological and physical processes facilitate the transition. A few individual cells that initiate the biofilm program cause nucleation of large, approximately scale-free, stationary aggregates of trapped swarm cells. Around aggregates, cells continue swarming almost unobstructed, while inside, trapped cells are added to the biofilm. While our experimental findings rule out previously suggested purely physical effects as a trigger for biofilm formation, they show how physical processes, such as clustering and jamming, accelerate biofilm formation.

2.
Nat Microbiol ; 7(1): 145-153, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34887546

RESUMO

Temperate bacterial viruses (phages) can transition between lysis-replicating and killing the host-and lysogeny, that is, existing as dormant prophages while keeping the host viable. Recent research showed that on invading a naïve cell, some phages communicate using a peptide signal, termed arbitrium, to control the decision of entering lysogeny. Whether communication can also serve to regulate exit from lysogeny (known as phage induction) is unclear. Here we show that arbitrium-coding prophages continue to communicate from the lysogenic state by secreting and sensing the arbitrium signal. Signalling represses DNA damage-dependent phage induction, enabling prophages to reduce the induction rate when surrounded by other lysogens. We show that in certain phages, DNA damage and communication converge to regulate the expression of the arbitrium-responsive gene aimX, while in others integration of DNA damage and communication occurs downstream of aimX expression. Additionally, signalling by prophages tilts the decision of nearby infecting phages towards lysogeny. Altogether, we find that phages use small-molecule communication throughout their entire life cycle to sense the abundance of lysogens in the population, thus avoiding lysis when they are likely to encounter established lysogens rather than permissive uninfected hosts.


Assuntos
Fagos Bacilares/metabolismo , Lisogenia , Prófagos/genética , Bacteriólise , Regulação Viral da Expressão Gênica , Proteínas Virais/genética
3.
Nat Commun ; 12(1): 2324, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875666

RESUMO

In bacterial communities, cells often communicate by the release and detection of small diffusible molecules, a process termed quorum-sensing. Signal molecules are thought to broadly diffuse in space; however, they often regulate traits such as conjugative transfer that strictly depend on the local community composition. This raises the question how nearby cells within the community can be detected. Here, we compare the range of communication of different quorum-sensing systems. While some systems support long-range communication, we show that others support a form of highly localized communication. In these systems, signal molecules propagate no more than a few microns away from signaling cells, due to the irreversible uptake of the signal molecules from the environment. This enables cells to accurately detect micron scale changes in the community composition. Several mobile genetic elements, including conjugative elements and phages, employ short-range communication to assess the fraction of susceptible host cells in their vicinity and adaptively trigger horizontal gene transfer in response. Our results underscore the complex spatial biology of bacteria, which can communicate and interact at widely different spatial scales.


Assuntos
Bactérias/genética , Conjugação Genética/genética , Transferência Genética Horizontal/genética , Percepção de Quorum/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bactérias/citologia , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Microscopia de Fluorescência/métodos , Transdução de Sinais/genética
4.
Elife ; 102021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33655883

RESUMO

Horizontal gene transfer is a major force in bacterial evolution. Mobile genetic elements are responsible for much of horizontal gene transfer and also carry beneficial cargo genes. Uncovering strategies used by mobile genetic elements to benefit host cells is crucial for understanding their stability and spread in populations. We describe a benefit that ICEBs1, an integrative and conjugative element of Bacillus subtilis, provides to its host cells. Activation of ICEBs1 conferred a frequency-dependent selective advantage to host cells during two different developmental processes: biofilm formation and sporulation. These benefits were due to inhibition of biofilm-associated gene expression and delayed sporulation by ICEBs1-containing cells, enabling them to exploit their neighbors and grow more prior to development. A single ICEBs1 gene, devI (formerly ydcO), was both necessary and sufficient for inhibition of development. Manipulation of host developmental programs allows ICEBs1 to increase host fitness, thereby increasing propagation of the element.


Many bacteria can 'have sex' ­ that is, they can share their genetic information and trade off segments of DNA. While these mobile genetic elements can be parasites that use the resources of their host to make more of themselves, some carry useful genes which, for example, help bacteria to fight off antibiotics. Integrative and conjugative elements (or ICEs) are a type of mobile segments that normally stay inside the genetic information of their bacterial host but can sometimes replicate and be pumped out to another cell. ICEBs1 for instance, is an element found in the common soil bacterium Bacillus subtilis. Scientists know that ICEBs1 can rapidly spread in biofilms ­ the slimly, crowded communities where bacteria live tightly connected ­ but it is still unclear whether it helps or hinders its hosts. Using genetic manipulations and tracking the survival of different groups of cells, Jones et al. show that carrying ICEBs1 confers an advantage under many conditions. When B. subtilis forms biofilms, the presence of the devI gene in ICEBs1 helps the cells to delay the production of the costly mucus that keeps bacteria together, allowing the organisms to 'cheat' for a little while and benefit from the tight-knit community without contributing to it. As nutrients become scarce in biofilms, the gene also allows the bacteria to grow for longer before they start to form spores ­ the dormant bacterial form that can weather difficult conditions. Mobile elements can carry genes that make bacteria resistant to antibiotics, harmful to humans, or able to use new food sources; they could even be used to artificially introduce genes of interest in these cells. The work by Jones et al. helps to understand the way these elements influence the fate of their host, providing insight into how they could be harnessed for the benefit of human health.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/genética , DNA Bacteriano/genética , Transferência Genética Horizontal , Aptidão Genética , Sequências Repetitivas Dispersas/fisiologia , Interações entre Hospedeiro e Microrganismos
5.
São Paulo; s.n; 2011. 111 p.
Tese em Português | LILACS | ID: lil-594108

RESUMO

Introdução: A Leucemia Linfóide Aguda (LLA) e o Linfoma não-Hodgkin (LNH) são os tipos de câncer mais incidentes em crianças e a ingestão alimentar pode ser diminuída pela quimioterapia. A sensação do gosto é resultante da detecção e resposta ao estímulo doce, salgado, azedo, amargo e umami. Esse último, identificado pelo glutamato monossódico (MSG), é relacionado ao aumento da palatabilidade, o que pode colaborar para a melhora da aceitação alimentar em crianças com câncer. Objetivo: Identificar os limiares de detecção do gosto umami e a qualidade da alimentação em crianças portadoras de LLA e LNH. Metodologia: Foi aplicado teste de sensibilidade de Threshold para determinar o limiar do gosto umami, com 6 concentrações crescentes de água deionizada e MSG. Aplicou-se recordatório 24 horas e questionário de frequência alimentar para avaliar o consumo alimentar. O peso e altura foram mensurados e IMC utilizados para classificação do estado nutricional, segundo o National Center for Health Statistics (2000). Caracterizou-se a amostra através da distribuição de frequência das variáveis, com auxílio do pacote estatístico Epinfo Versão 6.0. As análises estatísticas e gráficas foram feitas no software R, versão 2.6.2. Foi realizado teste de Cluster para caracterizar a amostra. Resultados: Dos 102 pacientes, 94 eram sensíveis ao umami. 54,3 por cento do sexo masculino e 45,7 por cento do feminino. 78,4 por cento portadores de LLA e 21,6 por cento de LNH. 91,0 por cento em fase de manutenção. Quanto à idade, 38,3 por cento entre 6 e 7 anos; 20,6 por cento entre 8 e 9; 15,7 por cento entre 10 e 11; 15,7 por cento entre 12 e 13 e 9,8 por cento 14 anos. 8,5 por cento apresentaram baixo peso, 66,0 por cento eutrofia e 25,5 por cento sobrepeso ou obesidade. O produto rico em glutamato monossódico mais consumido foi macarrão instantâneo. O molho inglês e de soja foram os menos consumidos...


Assuntos
Humanos , Criança , Adolescente , Ingestão de Alimentos , Glutamato de Sódio/uso terapêutico , Limiar Gustativo/classificação , Estado Nutricional , Paladar , Distúrbios do Paladar , Dieta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA