RESUMO
The ever-increasing antigenic diversity of the hemagglutinin (HA) of influenza A virus (IAV) poses a significant challenge for effective vaccine development. Notably, the matrix protein 2 (M2) is a highly conserved 97 amino acid long transmembrane tetrameric protein present in the envelope of IAV. More than 99â¯% of IAV strains circulating in American swine herds share the identical pandemic (pdm) isoform of M2, making it an ideal target antigen for a vaccine that could elicit broadly protective immunity. Here, using soluble nanoscale membrane assemblies termed nanodiscs (NDs), we designed this membrane mimetic nanostructures displaying full-length M2 in its natural transmembrane configuration (M2ND). Intramuscular (IM) immunization of swine with M2ND mixed with conventional emulsion adjuvant elicited M2-specific IgG antibodies in the serum that recognized influenza virions and M2-specific interferon-γ secreting cells present in the blood. Intranasal (IN) immunization with M2ND adjuvanted with a mycobacterial extract elicited M2-specific IgA in mucosal secretions that also recognized IAV. Immunization with an influenza whole inactivated virus (WIV) vaccine supplemented with a concurrent IM injection of M2ND mixed with an emulsion adjuvant increased the level of protective immunity afforded by the former against a challenge with an antigenically distinct H3N2 IAV, as exhibited by an enhanced elimination of virus from the lung. The lone IM administration of the M2ND vaccine mixed with an emulsion adjuvant provided measurable protection as evidenced by a >10-fold reduction or complete elimination of the challenge virus from the lung, but it did not diminish the viral load in nasal secretions nor the extent of pneumonia that ensued after the virus challenge. In contrast, an improved formulation of the M2ND vaccine that incorporated synthetic CpG oligodeoxynucleotides (CpG-ODN) in the nanostructures administered alone, via the IN and IM routes combined, provided a significant level of protective immunity against IAV as evidenced by a decreased viral load in both the upper and lower respiratory tracts and fully eliminated the occurrence of pneumonia in 89â¯% of the pigs immunized with this biologic. Notably, to be effective, the M2 protein must be displayed in the ND assemblies, as shown by the observation that simply mixing M2 with empty NDs incorporating CpG-ODN (eND-CpG-ODN) did not provide protective immunity. This novel M2-based vaccine offers great promise to help increase the breadth of protection afforded by conventional WIV vaccines against the diversity of IAV in circulation and, plausibly, as a broadly protective stand-alone biologic.
RESUMO
Human cytochrome P450 CYP17A1 catalyzes the hydroxylation of pregnenolone and progesterone at the C17 position, with subsequent C17-C20 bond scission, to form dehydroepiandrosterone and androstenedione respectively. The first hydroxylation reaction is faster in H2O than in D2O, while the second carboncarbon bond scission event demonstrates an inverse solvent isotope effect, which is more pronounced for 17-hydroxy pregnenolone. In order to better understand the cause of this difference, we compared the optical absorption spectra of oxygenated CYP17A1 with the four substrates (pregnenolone, progesterone, 17-hydroxy pregnenolone and 17-hydroxy progesterone) in both H2O and D2O. We also studied the temperature-dependent decay of the peroxo-ferric and hydroperoxo-ferric intermediates generated by cryoradiolysis of the corresponding oxygenated heme proteins at 77 K. For both pregnenolone and 17-hydroxypregnenolone, annealing of the peroxo-intermediates was observed at lower temperatures in H2O than in D2O. In contrast, no solvent isotope effect was detected when progesterone or 17-hydroxyprogesterone were used as substrates. These differences are attributed to their different positioning in the P450 active site with respect to the heme bound peroxo (Fe-OO-) moiety, which is in agreement with earlier structural and spectroscopic investigations. Analysis of the samples run in both H2O and in D2O, where 17-hydroxyprogesterone is the substrate, demonstrated significant (â¼25%) yield of androstenedione product relative to the oxygenated starting material.
Assuntos
Pregnenolona , Esteroide 17-alfa-Hidroxilase , Esteroide 17-alfa-Hidroxilase/metabolismo , Esteroide 17-alfa-Hidroxilase/química , Humanos , Pregnenolona/química , Pregnenolona/metabolismo , Progesterona/química , Progesterona/metabolismo , Óxido de Deutério/química , HidroxilaçãoRESUMO
Human cytochrome P450 CYP3A4 is involved in the processing of more than 35% of current pharmaceuticals and therefore is responsible for multiple drug-drug interactions (DDI). In order to develop a method for the detection and prediction of the possible involvement of new drug candidates in CYP3A4-mediated DDI, we evaluated the application of midazolam (MDZ) as a probe substrate. MDZ is hydroxylated by CYP3A4 in two positions: 1-hydroxy MDZ formed at lower substrate concentrations, and up to 35% of 4-hydroxy MDZ at high concentrations. The ratio of the formation rates of these two products (the site of metabolism ratio, SOM) was used as a measure of allosteric heterotropic interactions caused by effector molecules using CYP3A4 incorporated in lipid nanodiscs. The extent of the changes in the SOM in the presence of effectors is determined by chemical structure and is concentration-dependent. MD simulations of CYP3A4 in the lipid bilayer suggest that experimental results can be explained by the movement of the F-F' loop and concomitant changes in the shape and volume of the substrate-binding pocket. As a result of PGS binding at the allosteric site, several residues directly contacting MDZ move away from the substrate molecule, enabling the repositioning of the latter for minor product formation.
Assuntos
Citocromo P-450 CYP3A , Midazolam , Sítio Alostérico , Citocromo P-450 CYP3A/química , Interações Medicamentosas , Humanos , Bicamadas Lipídicas , Midazolam/química , Midazolam/metabolismo , Midazolam/farmacologiaRESUMO
Steroid metabolism in humans originates from cholesterol and involves several enzyme reactions including dehydrogenation, hydroxylation, and carbon-carbon bond cleavage that occur at regio- and stereo-specific points in the four-membered ring structure. Cytochrome P450s occur at critical junctions that control the production of the male sex hormones (androgens), the female hormones (estrogens) as well as the mineralocorticoids and glucocorticoids. An important branch point in human androgen production is catalyzed by cytochrome P450 CYP17A1 and involves an initial Compound I-mediated hydroxylation at the 17-position of either progesterone (PROG) or pregnenolone (PREG) to form 17-hydroxy derivatives, 17OH-PROG and 17OH-PREG, with approximately similar efficiencies. Subsequent processing of the 17-hydroxy substrates involves a C17-C20 bond scission (lyase) activity that is heavily favored for 17OH-PREG in humans. The mechanism for this lyase reaction has been debated for several decades, some workers favoring a Compound I-mediated process, with others arguing that a ferric peroxo- is the active oxidant. Mutations in CYP17A1 can have profound clinical manifestations. For example, the replacement of the glutamic acid side with a glycine chain at position 305 in the CYP17A1 structure causes a clinically relevant steroidopathy; E305G CYP17A1 displays a dramatic decrease in the production of dehydroepiandrosterone from pregnenolone but surprisingly increases the activity of the enzyme toward the formation of androstenedione from progesterone. To better understand the functional consequences of this mutation, we self-assembled wild-type and the E305G mutant of CYP17A1 into nanodiscs and examined the detailed catalytic mechanism. We measured substrate binding, spin state conversion, and solvent isotope effects in the hydroxylation and lyase pathways for these substrates. Given that, following electron transfer, the ferric peroxo- species is the common intermediate for both mechanisms, we used resonance Raman spectroscopy to monitor the positioning of important hydrogen-bonding interactions of the 17-OH group with the heme-bound peroxide. We discovered that the E305G mutation changes the orientation of the lyase substrate in the active site, which alters a critical hydrogen bonding of the 17-alcohol to the iron-bound peroxide. The observed switch in substrate specificity of the enzyme is consistent with this result if the hydrogen bonding to the proximal peroxo oxygen is necessary for a proposed nucleophilic peroxoanion-mediated mechanism for CYP17A1 in carbon-carbon bond scission.
Assuntos
Esteroide 17-alfa-Hidroxilase/genética , Esteroide 17-alfa-Hidroxilase/ultraestrutura , Esteroides/metabolismo , Androgênios/biossíntese , Androgênios/metabolismo , Androstenodiona/metabolismo , Domínio Catalítico , Desidroepiandrosterona/metabolismo , Humanos , Ligação de Hidrogênio , Hidroxilação , Mutação , Polimorfismo de Nucleotídeo Único/genética , Pregnenolona/metabolismo , Progesterona/metabolismo , Análise Espectral Raman/métodos , Esteroide 17-alfa-Hidroxilase/metabolismo , Esteroides/biossíntese , Especificidade por Substrato , Translocação GenéticaRESUMO
We developed an efficient and sensitive probe for drug-drug interactions mediated by human CYP3A4 by using midazolam (MDZ) as a probe substrate. Using global analysis of four parameters over several experimental data sets, we demonstrate that the first MDZ molecule (MDZ1) binds with high affinity at the productive site near the heme iron and gives only hydroxylation at the 1 position (1OH). The second midazolam molecule (MDZ2) binds at an allosteric site at the membrane surface and perturbs the position and mobility of MDZ1 such that the minor hydroxylation product at the 4 position (4OH) is formed in a 1:2 ratio (35%). No increase in catalytic rate is observed after the second MDZ binding. Hence, the site of the 1OH:4OH metabolism ratio is a sensitive probe for drugs, such as progesterone, that bind with high affinity to the allosteric site and serve as effectors. We observe similar changes in the MDZ 1OH:4OH ratio in the presence of progesterone (PGS), suggesting a direct communication between the active and allosteric sites. Mutations introduced into the F-F' loop indicate that residues F213 and D214 are directly involved in allosteric interactions leading to MDZ homotropic cooperativity, and these same residues, together with L211, are involved in heterotropic allosteric interactions in which PGS is the effector and MDZ the substrate. Molecular dynamics simulations provide a mechanistic picture of the origin of this cooperativity. These results show that the midazolam can be used as a sensitive probe for drug-drug interactions in human P450 CYP3A4.
Assuntos
Citocromo P-450 CYP3A/metabolismo , Midazolam/química , Midazolam/farmacologia , Regulação Alostérica/fisiologia , Sítio Alostérico , Citocromo P-450 CYP3A/efeitos dos fármacos , Citocromo P-450 CYP3A/fisiologia , Interações Medicamentosas/fisiologia , Humanos , Hidroxilação/efeitos dos fármacos , Cinética , Simulação de Dinâmica MolecularRESUMO
We describe the construction, expression and purification of three new membrane scaffold proteins (MSP) for use in assembling Nanodiscs. These new MSPs have a variety of luminescent properties for use in combination with several analytical methods. "Dark" MSP has no tryptophan residues, "Ultra-Dark" replaces both tryptophan and tyrosine with non-fluorescent side chains, and "Ultra-Bright" adds additional tryptophans to the parent membrane scaffold protein to provide a dramatic increase in native tryptophan fluorescence. All MSPs were used to successfully assemble Nanodiscs nominally 10 nm in diameter, and the resultant bilayer structure was characterized. An example of the usefulness of these new scaffold proteins is provided.
Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Corantes Fluorescentes/química , Proteínas de Membrana/química , Triptofano/química , Tirosina/química , Sequência de Aminoácidos , Bicamadas Lipídicas/química , Ligação Proteica , Multimerização Proteica , Espectrometria de FluorescênciaRESUMO
Human cytochrome P450 CYP17A1 first catalyzes hydroxylation at the C17 position of either pregnenolone (PREG) or progesterone (PROG), and a subsequent C17 -C20 bond scission to produce dehydroepiandrosterone (DHEA) or androstenedione (AD). In the T306A mutant, replacement of the Threonine 306 alcohol functionality, essential for efficient proton delivery in the hydroxylase reaction, has only a small effect on the lyase activity. In this work, resonance Raman spectroscopy is employed to provide crucial structural insight, confirming that this mutant, with its disordered proton shuttle, fails to generate essential hydroxylase pathway intermediates, accounting for the loss in hydroxylase efficiency. Significantly, a corresponding spectroscopic study with the susceptible lyase substrate, 17-OH PREG, not only reveals an initially trapped peroxo-iron intermediate experiencing an H-bond interaction of the 17-OH group with the proximal oxygen of the Fe-Op -Ot fragment, facilitating peroxo- attack on the C20 carbon, but also unequivocally shows the presence of the subsequent hemiketal intermediate of the lyase reaction.
Assuntos
Liases/genética , Liases/metabolismo , Prótons , Esteroide 17-alfa-Hidroxilase/genética , Esteroide 17-alfa-Hidroxilase/metabolismo , Humanos , Liases/química , Pregnenolona , Progesterona , Esteroide 17-alfa-Hidroxilase/químicaRESUMO
Enniatins (ENNs) are fungal secondary metabolites that frequently occur in grain in temperate climates. Their toxic potency is connected to their ionophoric character and lipophilicity. The biotransformation of ENNs predominantly takes place via cytochrome P450 3A (CYP 3A)-dependent oxidation reactions. Possible interaction with ENNs is relevant since CYP3A4 is the main metabolic enzyme for numerous drugs and contaminants. In the present study, we have determined the kinetic characteristics and inhibitory potential of ENNB1 in human liver microsomes (HLM) and CYP3A4-containing nanodiscs (ND). We showed in both in vitro systems that ENNB1 is mainly metabolised by CYP3A4, producing at least eleven metabolites. Moreover, ENNB1 significantly decreased the hydroxylation rates of the typical CYP3A4-substrate midazolam (MDZ). Deoxynivalenol (DON), which is the most prevalent mycotoxin in grain and usually co-occurrs with the ENNs, was not metabolised by CYP3A4 or binding to its active site. Nevertheless, DON affected the efficiency of this biotransformation pathway both in HLM and ND. The metabolite formation rates of ENNB1 and the frequently used drugs progesterone (PGS) and atorvastatin (ARVS) lactone were noticeably reduced, which indicated a certain affinity of DON to the enzyme with subsequent conformational changes. Our results emphasise the importance of drug-drug interaction studies, also with regard to natural toxins.
RESUMO
The role of Phe213 in the allosteric mechanism of human cytochrome P450 CYP3A4 was studied using a combination of progesterone (PGS) and carbamazepine (CBZ) as probe substrates. We expressed, purified, and incorporated into POPC Nanodiscs three mutants, F213A, F213S, and F213Y, and compared them with wild-type (WT) CYP3A4 by monitoring spectral titration, the rate of NADPH oxidation, and steady-state product turnover rates with pure substrates and substrate mixtures. All mutants demonstrated higher activity with CBZ, lower activity with PGS, and a reduced level of activation of CBZ epoxidation by PGS, which was most pronounced in the F213A mutant. Using all-atom molecular dynamics simulations, we compared the dynamics of WT CYP3A4 and the F213A mutant incorporated into the lipid bilayer and the effect of the presence of the PGS molecule at the allosteric peripheral site and evaluated the critical role of Phe213 in mediating the heterotropic allosteric interactions in CYP3A4.
Assuntos
Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Fenilalanina/metabolismo , Sítio Alostérico , Carbamazepina/química , Citocromo P-450 CYP3A/fisiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/fisiologia , Humanos , Hidroxilação , Cinética , Simulação de Dinâmica Molecular , Oxirredução , Fenilalanina/fisiologia , Progesterona/químicaRESUMO
Heterotropic interactions between atorvastatin (ARVS) and dronedarone (DND) have been deciphered using global analysis of the results of binding and turnover experiments for pure drugs and their mixtures. The in vivo presence of atorvastatin lactone (ARVL) was explicitly taken into account by using pure ARVL in analogous experiments. Both ARVL and ARVS inhibit DND binding and metabolism, while a significantly higher affinity of CYP3A4 for ARVL makes the latter the main modulator of activity (effector) in this system. Molecular dynamics simulations reveal significantly different modes of interactions of DND and ARVL with the substrate binding pocket and with a peripheral allosteric site. Interactions of both substrates with residues F213 and F219 at the allosteric site play a critical role in the communication of conformational changes induced by effector binding to productive binding of the substrate at the catalytic site.
Assuntos
Amiodarona/análogos & derivados , Atorvastatina/metabolismo , Citocromo P-450 CYP3A/metabolismo , Regulação Alostérica , Sítio Alostérico , Amiodarona/metabolismo , Animais , Sítios de Ligação , Relação Dose-Resposta a Droga , Dronedarona , Interações Medicamentosas , Humanos , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Ligação Proteica , Conformação Proteica , RatosRESUMO
The mechanisms by which cancer cell-intrinsic CYP monooxygenases promote tumor progression are largely unknown. CYP3A4 was unexpectedly associated with breast cancer mitochondria and synthesized arachidonic acid (AA)-derived epoxyeicosatrienoic acids (EETs), which promoted the electron transport chain/respiration and inhibited AMPKα. CYP3A4 knockdown activated AMPKα, promoted autophagy, and prevented mammary tumor formation. The diabetes drug metformin inhibited CYP3A4-mediated EET biosynthesis and depleted cancer cell-intrinsic EETs. Metformin bound to the active-site heme of CYP3A4 in a co-crystal structure, establishing CYP3A4 as a biguanide target. Structure-based design led to discovery of N1-hexyl-N5-benzyl-biguanide (HBB), which bound to the CYP3A4 heme with higher affinity than metformin. HBB potently and specifically inhibited CYP3A4 AA epoxygenase activity. HBB also inhibited growth of established ER+ mammary tumors and suppressed intratumoral mTOR. CYP3A4 AA epoxygenase inhibition by biguanides thus demonstrates convergence between eicosanoid activity in mitochondria and biguanide action in cancer, opening a new avenue for cancer drug discovery.
Assuntos
Biguanidas/metabolismo , Biguanidas/farmacologia , Citocromo P-450 CYP3A/metabolismo , Heme/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Biguanidas/química , Neoplasias da Mama/patologia , Domínio Catalítico , Respiração Celular/efeitos dos fármacos , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/deficiência , Citocromo P-450 CYP3A/genética , Receptor alfa de Estrogênio/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Modelos Moleculares , Transporte Proteico/efeitos dos fármacosRESUMO
Cytochrome P450 CYP3A4 is the main drug-metabolizing enzyme in the human liver, being responsible for oxidation of 50% of all pharmaceuticals metabolized by human P450 enzymes. Possessing a large substrate binding pocket, it can simultaneously bind several substrate molecules and often exhibits a complex pattern of drug-drug interactions. In order to better understand structural and functional aspects of binding of multiple substrate molecules to CYP3A4 we used resonance Raman and UV-VIS spectroscopy to document the effects of binding of synthetic testosterone dimers of different configurations, cis-TST2 and trans-TST2. We directly demonstrate that the binding of two steroid molecules, which can assume multiple possible configurations inside the substrate binding pocket of monomeric CYP3A4, can lead to active site structural changes that affect functional properties. Using resonance Raman spectroscopy, we have documented perturbations in the ferric and Fe-CO states by these substrates, and compared these results with effects caused by binding of monomeric TST. While the binding of trans-TST2 yields results similar to those obtained with monomeric TST, the binding of cis-TST2 is much tighter and results in significantly more pronounced conformational changes of the porphyrin side chains and Fe-CO unit. In addition, binding of an additional monomeric TST molecule in the remote allosteric site significantly improves binding affinity and the overall spin shift for CYP3A4 with trans-TST2 dimer bound inside the substrate binding pocket. This result provides the first direct evidence for an allosteric effect of the peripheral binding site at the protein-membrane interface on the functional properties of CYP3A4.
Assuntos
Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , Testosterona/análogos & derivados , Sítio Alostérico , Sítios de Ligação , Humanos , Ligação Proteica , Análise Espectral Raman , Testosterona/química , Testosterona/metabolismoRESUMO
CYP2J2 epoxygenase is an extrahepatic, membrane bound cytochrome P450 (CYP) that is primarily found in the heart and mediates endogenous fatty acid metabolism. CYP2J2 interacts with membranes through an N-terminal anchor and various non-contiguous hydrophobic residues. The molecular details of the motifs that mediate membrane interactions are complex and not fully understood. To gain better insights of these complex protein-lipid interactions, we employed molecular dynamics (MD) simulations using a highly mobile membrane mimetic (HMMM) model that enabled multiple independent spontaneous membrane binding events to be captured. Simulations revealed that CYP2J2 engages with the membrane at the F-G loop through hydrophobic residues Trp-235, Ille-236, and Phe-239. To explore the role of these residues, three F-G loop mutants were modeled from the truncated CYP2J2 construct (Δ34) which included Δ34-I236D, Δ34-F239H and Δ34-I236D/F239H. Using the HMMM coordinates of CYP2J2, the simulations were extended to a full POPC membrane which showed a significant decrease in the depth of insertion for each of the F-G loop mutants. The CYP2J2 F-G loop mutants were expressed in E. coli and were shown to be localized to the cytosolic fraction at a greater percentage relative to construct Δ34. Notably, the functional data demonstrated that the double mutant, Δ34-I236D/F239H, maintained native-like enzymatic activity. The membrane insertion characteristics were examined by monitoring CYP2J2 Trp-quenching fluorescence spectroscopy upon binding nanodiscs containing pyrene phospholipids. Relative to the Δ34 construct, the F-G loop mutants exhibited lower Trp quenching and membrane insertion. Taken together, the results suggest that the mutants exhibit a different membrane topology in agreement with the MD simulations and provide important evidence towards the involvement of key residues in the F-G loop of CYP2J2.
Assuntos
Aminoácidos/química , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/ultraestrutura , Bicamadas Lipídicas/química , Modelos Químicos , Simulação de Dinâmica Molecular , Substituição de Aminoácidos , Sítios de Ligação , Citocromo P-450 CYP2J2 , Ativação Enzimática , Ligação Proteica , Conformação Proteica , Eletricidade Estática , Relação Estrutura-AtividadeRESUMO
Using Nanodiscs, we quantitate the heterotropic interaction between two different drugs mediated by monomeric CYP3A4 incorporated into a nativelike membrane environment. The mechanism of this interaction is deciphered by global analysis of multiple-turnover experiments performed under identical conditions using the pure substrates progesterone (PGS) and carbamazepine (CBZ) and their mixtures. Activation of CBZ epoxidation and simultaneous inhibition of PGS hydroxylation are measured and quantitated through differences in their respective affinities for both a remote allosteric site and the productive catalytic site near the heme iron. Preferred binding of PGS at the allosteric site and a stronger preference for CBZ binding at the productive site give rise to a nontrivial drug-drug interaction. Molecular dynamics simulations indicate functionally important conformational changes caused by PGS binding at the allosteric site and by two CBZ molecules positioned inside the substrate binding pocket. Structural changes involving Phe-213, Phe-219, and Phe-241 are thought to be responsible for the observed synergetic effects and positive allosteric interactions between these two substrates. Such a mechanism is likely of general relevance to the mutual heterotropic effects caused by biologically active compounds that exhibit different patterns of interaction with the distinct allosteric and productive sites of CYP3A4, as well as other xenobiotic metabolizing cytochromes P450 that are also involved in drug-drug interactions. Importantly, this work demonstrates that a monomeric CYP3A4 can display the full spectrum of activation and cooperative effects that are observed in hepatic membranes.
Assuntos
Carbamazepina/farmacocinética , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Progesterona/farmacocinética , Sítio Alostérico , Carbamazepina/química , Domínio Catalítico , Ativação Enzimática , Humanos , Hidroxilação , Cinética , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Progesterona/químicaRESUMO
Cytochrome P450 CYP17A1 catalyzes a series of reactions that lie at the intersection of corticoid and androgen biosynthesis and thus occupies an essential role in steroid hormone metabolism. This multifunctional enzyme catalyzes the 17α-hydroxylation of Δ4- and Δ5-steroids progesterone and pregnenolone to form the corresponding 17α-hydroxy products through its hydroxylase activity, and a subsequent 17,20-carbon-carbon scission of pregnene-side chain produce the androgens androstenedione (AD) and dehydroepiandrosterone (DHEA). While the former hydroxylation reaction is believed to proceed through a conventional "Compound I" rebound mechanism, it has been suggested that the latter carbon cleavage is initiated by an iron-peroxy intermediate. We report on the role of Thr306 in CYP17 catalysis. Thr306 is a member of the conserved acid/alcohol pair thought to be essential for the efficient delivery of protons required for hydroperoxoanion heterolysis and formation of Compound I in the cytochromes P450. Wild type and T306A CYP17A1 self-assembled in Nanodiscs were used to quantitate turnover and coupling efficiencies of CYP17's physiological Δ4- and Δ5-substrates. We observed that T306A co-incorporated in Nanodiscs with its redox partner cytochrome P450 oxidoreductase, coupled NADPH only by 0.9% and 0.7% compared to the wild type (97% and 22%) during the conversion of pregnenolone and progesterone, respectively, to the corresponding 17-OH products. Despite increased oxidation of pyridine nucleotide, hydroxylase activity was drastically diminished in the T306A mutant, suggesting a high degree of uncoupling in which reducing equivalents and protons are funneled into non-productive pathways. This is similar to previous work with other P450 catalyzed hydroxylation. However, catalysis of carbon-carbon bond scission by the T306A mutant was largely unimpeded by disruption of the CYP17A1 acid-alcohol pair. The unique response of CYP17A1 lyase activity to mutation of Thr306 is consistent with a reactive intermediate formed independently of proton delivery in the active site, and supports involvement of a nucleophilic peroxo-anion rather than the traditional Compound I in catalysis.
Assuntos
Domínio Catalítico , Prótons , Esteroide 17-alfa-Hidroxilase/química , Treonina/química , Catálise , Humanos , Mutação , Pregnenolona/química , Pregnenolona/metabolismo , Progesterona/química , Progesterona/metabolismo , Esteroide 17-alfa-Hidroxilase/genética , Esteroide 17-alfa-Hidroxilase/metabolismo , Treonina/genéticaRESUMO
Human steroid hormone biosynthesis is the result of a complex series of chemical transformations operating on cholesterol, with key steps mediated by members of the cytochrome P450 superfamily. In the formation of the male hormone dehydroepiandrosterone, pregnenolone is first hydroxylated by P450 CYP17A1 at the 17-carbon, followed a second round of catalysis by the same enzyme that cleaves the C17-C20 bond, releasing acetic acid and the 17-keto product. In order to explore the mechanism of this C-C "lyase" activity, we investigated the kinetic isotope effect on the steady-state turnover of Nanodisc-incorporated CYP17A1. Our experiments revealed the expected small positive (~1.3) isotope effect for the hydroxylase chemistry. However, a surprising result was the large inverse isotope effect (~0.39) observed for the C-C bond cleavage activity. These results strongly suggest that the P450 reactive intermediate involved in this latter step is an iron-bound ferric peroxoanion.
Assuntos
Desidroepiandrosterona/biossíntese , Óxido de Deutério/metabolismo , Compostos Férricos/metabolismo , Compostos Ferrosos/metabolismo , Esteroide 17-alfa-Hidroxilase/metabolismo , Água/metabolismo , Biocatálise , Óxido de Deutério/química , Compostos Férricos/química , Compostos Ferrosos/química , Humanos , Cinética , Masculino , Solventes/química , Solventes/metabolismo , Água/químicaRESUMO
There is increasing interest in the application of nanotechnology to solve the difficult problem of therapeutic administration of pharmaceuticals. Nanodiscs, composed of a stable discoidal lipid bilayer encircled by an amphipathic membrane scaffold protein that is an engineered variant of the human Apo A-I constituent of high-density lipoproteins, have been a successful platform for providing a controlled lipid composition in particles that are especially useful for investigating membrane protein structure and function. In this communication, we demonstrate that nanodiscs are effective in suppressing respiratory syncytial viral (RSV) infection both in vitro and in vivo when self-assembled with the minor pulmonary surfactant phospholipid palmitoyloleoylphosphatidylglycerol (POPG). Preparations of nanodiscs containing POPG (nPOPG) antagonized interleukin-8 production from Beas2B epithelial cells challenged by RSV infection, with an IC50 of 19.3 µg/mL. In quantitative in vitro plaque assays, nPOPG reduced RSV infection by 93%. In vivo, nPOPG suppressed inflammatory cell infiltration into the lung, as well as IFN-γ production in response to RSV challenge. nPOPG also completely suppressed the histopathological changes in lung tissue elicited by RSV and reduced the amount of virus recovered from lung tissue by 96%. The turnover rate of nPOPG was estimated to have a halftime of 60-120 minutes (m), based upon quantification of the recovery of the human Apo A-I constituent. From these data, we conclude that nPOPG is a potent antagonist of RSV infection and its inflammatory sequelae both in vitro and in vivo.
Assuntos
Antivirais/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Pulmão , Nanoestruturas/química , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Administração Intranasal , Análise de Variância , Animais , Antivirais/química , Antivirais/farmacocinética , Apolipoproteína A-I , Líquido da Lavagem Broncoalveolar/química , Linhagem Celular , Feminino , Humanos , Interleucina-8/metabolismo , Bicamadas Lipídicas , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Dinâmica Molecular , Nanoestruturas/administração & dosagem , Fosfatidilgliceróis/química , Fosfatidilgliceróis/farmacocinética , Fosfatidilgliceróis/farmacologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Ligação Viral/efeitos dos fármacos , Cultura de VírusRESUMO
The normal reaction mechanism of cytochrome P450 operates by utilizing two reducing equivalents to reduce atmospheric dioxygen, producing one molecule of water and an oxygenated product in an overall stoichiometry of 2 electrons:1 dioxygen:1 product. However, three alternate unproductive pathways exist where the intermediate iron-oxygen states in the catalytic cycle can yield reduced oxygen products without substrate metabolism. The first involves release of superoxide from the oxygenated intermediate while the second occurs after input of the second reducing equivalent. Superoxide rapidly dismutates and hence both processes produce hydrogen peroxide that can be cytotoxic to the organism. In both cases, the formation of hydrogen peroxide involves the same overall stoichiometry as oxygenases catalysis. The key step in the catalytic cycle of cytochrome P450 involves scission of the oxygen-oxygen bond of atmospheric dioxygen to produce a higher valent iron-oxo state termed "Compound I". This intermediate initiates a radical reaction in the oxygenase pathway but also can uptake two additional reducing equivalents from reduced pyridine nucleotide (NADPH) and the flavoprotein reductase to produce a second molecule of water. This non-productive decay of Compound I thus yields an overall oxygen to NADPH ratio of 1:2 and does not produce hydrocarbon oxidation. This water uncoupling reaction provides one of a limited means to study the reactivity of the critical Compound I intermediate in P450 catalysis. We measured simultaneously the rates of NADPH and oxygen consumption as a function of substrate concentration during the steady-state hydroxylation of testosterone catalyzed by human P450 CYP3A4 reconstituted in Nanodiscs. We discovered that the "oxidase" uncoupling pathway is also operating in the substrate free form of the enzyme with rate of this pathway substantially increasing with the first substrate binding event. Surprisingly, a large fraction of the reducing equivalents used by the P450 system is wasted in this oxidase pathway. In addition, the overall coupling with testosterone and bromocryptine as substrates is significantly higher in the presence of anionic lipids, which is attributed to the changes in the redox potential of CYP3A4 and reductase.