RESUMO
The excited states of N=44 ^{74}Zn were investigated via γ-ray spectroscopy following ^{74}Cu ß decay. By exploiting γ-γ angular correlation analysis, the 2_{2}^{+}, 3_{1}^{+}, 0_{2}^{+}, and 2_{3}^{+} states in ^{74}Zn were firmly established. The γ-ray branching and E2/M1 mixing ratios for transitions deexciting the 2_{2}^{+}, 3_{1}^{+}, and 2_{3}^{+} states were measured, allowing for the extraction of relative B(E2) values. In particular, the 2_{3}^{+}â0_{2}^{+} and 2_{3}^{+}â4_{1}^{+} transitions were observed for the first time. The results show excellent agreement with new microscopic large-scale shell-model calculations, and are discussed in terms of underlying shapes, as well as the role of neutron excitations across the N=40 gap. Enhanced axial shape asymmetry (triaxiality) is suggested to characterize ^{74}Zn in its ground state. Furthermore, an excited K=0 band with a significantly larger softness in its shape is identified. A shore of the N=40 "island of inversion" appears to manifest above Z=26, previously thought as its northern limit in the chart of the nuclides.
RESUMO
Proton radioactivity was discovered exactly 50 years ago. First, this nuclear decay mode sets the limit of existence on the nuclear landscape on the neutron-deficient side. Second, it comprises fundamental aspects of both quantum tunnelling as well as the coupling of (quasi)bound quantum states with the continuum in mesoscopic systems such as the atomic nucleus. Theoretical approaches can start either from bound-state nuclear shell-model theory or from resonance scattering. Thus, proton-radioactivity guides merging these types of theoretical approaches, which is of broader relevance for any few-body quantum system. Here, we report experimental measurements of proton-emission branches from an isomeric state in 54mNi, which were visualized in four dimensions in a newly developed detector. We show that these decays, which carry an unusually high angular momentum, â = 5 and â = 7, respectively, can be approximated theoretically with a potential model for the proton barrier penetration and a shell-model calculation for the overlap of the initial and final wave functions.
RESUMO
From detailed spectroscopy of ^{110}Cd and ^{112}Cd following the ß^{+}/electron-capture decay of ^{110,112}In and the ß^{-} decay of ^{112}Ag, very weak decay branches from nonyrast states are observed. The transition rates determined from the measured branching ratios and level lifetimes obtained with the Doppler-shift attenuation method following inelastic neutron scattering reveal collective enhancements that are suggestive of a series of rotational bands. In ^{110}Cd, a γ band built on the shape-coexisting intruder configuration is suggested. For ^{112}Cd, the 2^{+} and 3^{+} intruder γ-band members are suggested, the 0_{3}^{+} band is extended to spin 4^{+}, and the 0_{4}^{+} band is identified. The results are interpreted using beyond-mean-field calculations employing the symmetry conserving configuration mixing method with the Gogny D1S energy density functional and with the suggestion that the Cd isotopes exhibit multiple shape coexistence.
RESUMO
Precision measurements of superallowed Fermi ß-decay transitions, particularly for the lightest superallowed emitters ^{10}C and ^{14}O, set stringent limits on possible scalar current contributions to the weak interaction. In the present work, a discrepancy between recent measurements of the ^{10}C half-life is addressed through two high-precision half-life measurements, via γ-ray photopeak and ß counting, that yield consistent results for the ^{10}C half-life of T_{1/2}=19.2969±0.0074 s and T_{1/2}=19.3009±0.0017 s, respectively. The latter is the most precise superallowed ß-decay half-life measurement reported to date and the first to achieve a relative precision below 10^{-4}. A fit to the world superallowed ß-decay data including the ^{10}C half-life measurements reported here yields b_{F}=-0.0018±0.0021 (68% C.L.) for the Fierz interference term and C_{S}/C_{V}=+0.0009±0.0011 for the ratio of the weak scalar to vector couplings assuming left-handed neutrinos.
RESUMO
The isoscalar monopole response has been measured in the unstable nucleus (68)Ni using inelastic alpha scattering at 50A MeV in inverse kinematics with the active target MAYA at GANIL. The isoscalar giant monopole resonance (ISGMR) centroid was determined to be 21.1 ± 1.9 MeV and indications for a soft monopole mode are provided for the first time at 12.9 ± 1.0 MeV. Analysis of the corresponding angular distributions using distorted-wave-born approximation with random-phase approximation transition densities indicates that the L = 0 multipolarity dominates the cross section for the ISGMR and significantly contributes to the low-energy mode. The L=0 part of this low-energy mode, the soft monopole mode, is dominated by neutron excitations. This demonstrates the relevance of inelastic alpha scattering in inverse kinematics in order to probe both the ISGMR and isoscalar soft modes in neutron-rich nuclei.
RESUMO
A long-lived J(π) = 4(1)(+) isomer, T(1/2) = 2.2(1) ms, has been discovered at 643.4(1) keV in the weakly bound (9)(26)F nucleus. It was populated at Grand Accélérateur National d'Ions Lourds in the fragmentation of a (36)S beam. It decays by an internal transition to the J(π) = 1(1)(+) ground state [82(14)%], by ß decay to (26)Ne, or ß-delayed neutron emission to (25)Ne. From the ß-decay studies of the J(π) =1(1)(+) and J(π) = 4(1)(+) states, new excited states have been discovered in (25,26)Ne. Gathering the measured binding energies of the J(π) = 1(1)(+) -4(1)(+) multiplet in (9)(26)F, we find that the proton-neutron π0d(5/2)ν0d(3/2) effective force used in shell-model calculations should be reduced to properly account for the weak binding of (9)(26)F. Microscopic coupled cluster theory calculations using interactions derived from chiral effective field theory are in very good agreement with the energy of the low-lying 1(1)(+), 2(1)(+), 4(1)(+) states in (26)F. Including three-body forces and coupling to the continuum effects improve the agreement between experiment and theory as compared to the use of two-body forces only.
RESUMO
We report final-state-exclusive measurements of the light charged fragments in coincidence with (26)Ne residual nuclei following the direct two-proton removal from a neutron-rich (28)Mg secondary beam. A Dalitz-plot analysis and comparisons with simulations show that a majority of the triple-coincidence events with two protons display phase-space correlations consistent with the (two-body) kinematics of a spatially correlated pair-removal mechanism. The fraction of such correlated events, 56(12)%, is consistent with the fraction of the calculated cross section, 64%, arising from spin S=0 two-proton configurations in the entrance-channel (shell-model) (28)Mg ground state wave function. This result promises access to an additional and more specific probe of the spin and spatial correlations of valence nucleon pairs in exotic nuclei produced as fast secondary beams.
RESUMO
We report on the single neutron and proton removal reactions from unstable nuclei with large asymmetry ΔS = S(n)-S(p) at incident energies below 80 MeV/nucleon. Strong nonsudden effects are observed in the case of deeply-bound-nucleon removal. The corresponding parallel momentum distributions exhibit an abrupt cutoff at high momentum that corresponds to an energy threshold occurring when the incident energy per particle is of comparable magnitude to the nucleon separation energy. A large low-momentum tail is related to both dissipative processes and the dynamics of the nucleon removal process. New limits for the applicability of the sudden and eikonal approximations in nucleon knockout are given.
RESUMO
We report on the first experimental study of quadrupole collectivity in the very neutron-rich nuclei (47,48)Ar using intermediate-energy Coulomb excitation. These nuclei are located along the path from doubly magic Ca to collective S and Si isotopes, a critical region of shell evolution and structural change. The deduced B(E2) transition strengths are confronted with large-scale shell-model calculations in the sdpf shell using the state-of-the-art SDPF-Uand EPQQM effective interactions. The comparison between experiment and theory indicates that a shell-model description of Ar isotopes around N=28 remains a challenge.
RESUMO
We present a novel technique for studying the quenching of shell gaps in exotic isotopes. The method is based on extracting Gamow-Teller (ΔL=0, ΔS=1) transition strengths [B(GT)] to low-lying states from charge-exchange reactions at intermediate beam energies. These Gamow-Teller strengths are very sensitive to configuration mixing between cross-shell orbitals, and this technique thus provides an important complement to other tools currently used to study cross-shell mixing. This work focuses on the N=8 shell gap. We populated the ground and 2.24 MeV 0+ states in 12Be using the 12B(1+) (7Li, 7Be) reaction at 80 MeV/u in inverse kinematics. Using the ground-state B(GT) value from ß-decay measurements (0.184±0.007) as a calibration, the B(GT) for the transition to the second 0+ state was determined to be 0.214±0.051. Comparing the extracted Gamow-Teller strengths with shell-model calculations, it was determined that the wave functions of the first and second 0+ states in 12Be are composed of 25±5% and 60±5% (0s)4(0p)8 configurations, respectively.
RESUMO
The technique of invariant mass spectroscopy has been used to measure, for the first time, the ground state energy of neutron-unbound (28)F, determined to be a resonance in the (27)F+n continuum at 220(50) keV. States in (28)F were populated by the reactions of a 62 MeV/u (29)Ne beam impinging on a 288 mg/cm(2) beryllium target. The measured (28)F ground state energy is in good agreement with USDA/USDB shell model predictions, indicating that pf shell intruder configurations play only a small role in the ground state structure of (28)F and establishing a low-Z boundary of the island of inversion for N=19 isotones.
RESUMO
Establishing how and when large N/Z values require modified or new theoretical tools is a major quest in nuclear physics. Here we report the first measurement of the lifetime of the 2(1)+ state in the near-dripline nucleus 20C. The deduced value of τ(2(1)+)=9.8±2.8(stat)(-1.1)(+0.5)(syst) ps gives a reduced transition probability of B(E2; 2(1)+â0(g.s.)+)=7.5(-1.7)(+3.0)(stat)(-0.4)(+1.0)(syst) e2 fm4 in good agreement with a shell model calculation using isospin-dependent effective charges.
RESUMO
Absolute cross sections have been determined following single neutron knockout reactions from 10Be and 10C at intermediate energy. Nucleon density distributions and bound-state wave function overlaps obtained from both variational Monte Carlo (VMC) and no core shell model (NCSM) ab initio calculations have been incorporated into the theoretical description of knockout reactions. Comparison to experimental cross sections demonstrates that the VMC approach, with the inclusion of 3-body forces, provides the best overall agreement while the NCSM and conventional shell-model calculations both overpredict the cross sections by 20% to 30% for 10Be and by 40% to 50% for 10C, respectively. This study gains new insight into the importance of 3-body forces and continuum effects in light nuclei and provides a sensitive technique to assess the accuracy of ab initio calculations for describing these effects.
RESUMO
The transition rates for the 2(1)+ states in (62,64,66)Fe were studied using the recoil distance Doppler-shift technique applied to projectile Coulomb excitation reactions. The deduced E2 strengths illustrate the enhanced collectivity of the neutron-rich Fe isotopes up to N = 40. The results are interpreted using the generalized concept of valence proton symmetry which describes the evolution of nuclear structure around N = 40 as governed by the number of valence protons with respect to Z ≈ 30. The trend of collectivity suggested by the experimental data is described by state-of-the-art shell-model calculations with a new effective interaction developed for the fpgd valence space.
RESUMO
A high-precision half-life measurement for the superallowed ß+ emitter 26Al(m) was performed at the TRIUMF-ISAC radioactive ion beam facility yielding T 1/2 6346.54 ± 0.46(stat) ± 0.60 (syst) ms, consistent with, but 2.5 times more precise than, the previous world average. The 26Al(m) half-life and ft value, 3037.53(61) s, are now the most precisely determined for any superallowed ß decay. Combined with recent theoretical corrections for isospin-symmetry-breaking and radiative effects, the corrected Ft value for (26)Al(m), 3073.0(12) s, sets a new benchmark for the high-precision superallowed Fermi ß-decay studies used to test the conserved vector current hypothesis and determine the V(ud) element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix.
Assuntos
Alumínio/química , Partículas beta , Radioisótopos/química , Meia-VidaRESUMO
The branching ratio for the superallowed beta(+) decay of (38)K(m) was measured at TRIUMF's ISAC radioactive ion beam facility. The M3 internal transition between the isomer and the ground state of (38)K(m) was observed with a branching ratio of 330(43) ppm. A search for the nonanalogue beta-decay branch to the first excited 0(+) state in (38)Ar was also performed and yielded an upper limit of < or =12 ppm at 90% C.L. These measurements lead to a revised superallowed branching ratio for (38)K(m) of 99.967(4)%, and increase the (38)K(m) ft value by its entire quoted uncertainty to ft=3052.1(10) s. Implications for tests of the nuclear-structure dependent corrections in superallowed beta decays and the extraction of the Cabibbo-Kobayashi-Maskawa matrix element V(ud) are discussed.
RESUMO
A high-precision branching ratio measurement for the superallowed beta+ decay of 62Ga was performed at the Isotope Separator and Accelerator radioactive ion beam facility. Nineteen gamma rays emitted following beta+ decay of 62Ga were identified, establishing the dominant superallowed branching ratio to be (99.861+/-0.011)%. Combined with recent half-life and Q-value measurements, this branching ratio yields a superallowed ft value of 3075.6+/-1.4 s for 62Ga decay. These results demonstrate the feasibility of high-precision superallowed branching ratio measurements in the A>or=62 mass region and provide the first stringent tests of the large isospin-symmetry-breaking effects predicted for these decays.
RESUMO
Three rotational bands in 74Kr were studied up to (in one case one transition short of) the maximum spin I(max) of their respective single-particle configurations. Their lifetimes have been determined using the Doppler-shift attenuation method. The deduced transition quadrupole moments reveal a modest decrease, but far from a complete loss of collectivity at the maximum spin I(max). This feature, together with the results of mean field calculations, indicates that the observed bands do not terminate at I = I(max).