Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cancer Med ; 13(12): e7434, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923407

RESUMO

INTRODUCTION: With locally advanced pancreatic cancer (LAPC), uncontrolled local tumor growth frequently leads to mortality. Advancements in radiotherapy (RT) techniques have enabled conformal delivery of escalated-dose RT (EDR), which may have potential local control and overall survival (OS) benefits based on retrospective and early prospective studies. With evidence for EDR emerging, we characterized the adoption of EDR across the United States and its associated outcomes. METHODS: We searched the National Cancer Database for nonsurgically managed LAPC patients diagnosed between 2004 and 2019. Pancreas-directed RT with biologically effective doses (BED10) ≥39 and ≤70 Gy was labeled conventional-dose RT (CDR), and BED10 >70 and ≤132 Gy was labeled EDR. We identified associations of EDR and OS using logistic and Cox regressions, respectively. RESULTS: Among the definitive therapy subset (n = 54,115) of the entire study cohort (n = 91,493), the most common treatments were chemotherapy alone (69%), chemotherapy and radiation (29%), and RT alone (2%). For the radiation therapy subset (n = 16,978), use of pancreas-directed RT remained between 13% and 17% over the study period (ptrend > 0.999). Using multivariable logistic regression, treatment at an academic/research facility (adjusted odds ratio [aOR] 1.46, p < 0.001) and treatment between 2016 and 2019 (aOR 2.54, p < 0.001) were associated with greater receipt of EDR, whereas use of chemotherapy (aOR 0.60, p < 0.001) was associated with less receipt. Median OS estimates for EDR and CDR were 14.5 months and 13.0 months (p < 0.0001), respectively. For radiation therapy subset patients with available survival data (n = 13,579), multivariable Cox regression correlated EDR (adjusted hazard ratio 0.85, 95% confidence interval 0.80-0.91; p < 0.001) with longer OS versus CDR. DISCUSSION AND CONCLUSIONS: Utilization of EDR has increased since 2016, but overall utilization of RT for LAPC has remained at less than one in five patients for almost two decades. These real-world results additionally provide an estimate of effect size of EDR for future prospective trials.


Assuntos
Neoplasias Pancreáticas , Dosagem Radioterapêutica , Humanos , Neoplasias Pancreáticas/radioterapia , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Masculino , Feminino , Estados Unidos/epidemiologia , Idoso , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso de 80 Anos ou mais
2.
Nat Commun ; 15(1): 3987, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734698

RESUMO

Despite advances in active drug targeting for blood-brain barrier penetration, two key challenges persist: first, attachment of a targeting ligand to the drug or drug carrier does not enhance its brain biodistribution; and second, many brain diseases are intricately linked to microcirculation disorders that significantly impede drug accumulation within brain lesions even after they cross the barrier. Inspired by the neuroprotective properties of vinpocetine, which regulates cerebral blood flow, we propose a molecular library design centered on this class of cyclic tertiary amine compounds and develop a self-enhanced brain-targeted nucleic acid delivery system. Our findings reveal that: (i) vinpocetine-derived ionizable-lipidoid nanoparticles efficiently breach the blood-brain barrier; (ii) they have high gene-loading capacity, facilitating endosomal escape and intracellular transport; (iii) their administration is safe with minimal immunogenicity even with prolonged use; and (iv) they have potent pharmacologic brain-protective activity and may synergize with treatments for brain disorders as demonstrated in male APP/PS1 mice.


Assuntos
Barreira Hematoencefálica , Encéfalo , Circulação Cerebrovascular , Nanopartículas , Alcaloides de Vinca , Animais , Alcaloides de Vinca/farmacologia , Alcaloides de Vinca/farmacocinética , Alcaloides de Vinca/administração & dosagem , Alcaloides de Vinca/química , Nanopartículas/química , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Camundongos , Circulação Cerebrovascular/efeitos dos fármacos , Masculino , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/irrigação sanguínea , Humanos , Fármacos Neuroprotetores/farmacocinética , Fármacos Neuroprotetores/farmacologia , Camundongos Endogâmicos C57BL , Distribuição Tecidual , Sistemas de Liberação de Medicamentos , Camundongos Transgênicos
3.
Cancer Res ; 84(10): 1546-1547, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38745496

RESUMO

Antibody-based immune checkpoint blockade therapy has revolutionized the field of cancer immunotherapy, yet its efficacy remains limited in immunologically cold tumors. Combining checkpoint inhibitors with costimulatory agonists improves tumoricidal activity of T cells but also can lead to off-target hepatotoxicity. Although bispecific antibodies confer tumor selectivity to alleviate undesirable adverse effects, toxicity concerns persist with increased dosing. In this issue of Cancer Research, Yuwen and colleagues introduce ATG-101, a tetravalent PD-L1×4-1BB bispecific antibody with high programmed death ligand 1 (PD-L1) affinity and low 4-1BB affinity, aiming to mitigate hepatotoxicity. ATG-101 demonstrates PD-L1-dependent 4-1BB activation, leading to selective T-cell activation within the tumor microenvironment. ATG-101 exhibits potent antitumor activity, even in large, immunologically cold, and monotherapy-resistant tumor models. Single-cell RNA sequencing reveals significant shifts of immune cell populations in the tumor microenvironment from protumor to antitumor phenotypes following ATG-101 treatment. In cynomolgus monkeys, no serious cytokine storm and hepatotoxicity are observed after ATG-101 treatment, indicating a broad therapeutic window for ATG-101 in cancer treatment. This study highlights the potential of tetravalent bispecific antibodies in cancer immunotherapy, with implications for various antibody-based treatment modalities across different fields. See related article by Yuwen et al., p. 1680.


Assuntos
Anticorpos Biespecíficos , Antígeno B7-H1 , Animais , Humanos , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Macaca fascicularis , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos
4.
Nat Biomed Eng ; 8(5): 593-610, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641710

RESUMO

Intracellular DNA sensors regulate innate immunity and can provide a bridge to adaptive immunogenicity. However, the activation of the sensors in antigen-presenting cells (APCs) by natural agonists such as double-stranded DNAs or cyclic nucleotides is impeded by poor intracellular delivery, serum stability, enzymatic degradation and rapid systemic clearance. Here we show that the hydrophobicity, electrostatic charge and secondary conformation of helical polypeptides can be optimized to stimulate innate immune pathways via endoplasmic reticulum stress in APCs. One of the three polypeptides that we engineered activated two major intracellular DNA-sensing pathways (cGAS-STING (for cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes) and Toll-like receptor 9) preferentially in APCs by promoting the release of mitochondrial DNA, which led to the efficient priming of effector T cells. In syngeneic mouse models of locally advanced and metastatic breast cancers, the polypeptides led to potent DNA-sensor-mediated antitumour responses when intravenously given as monotherapy or with immune checkpoint inhibitors. The activation of multiple innate immune pathways via engineered cationic polypeptides may offer therapeutic advantages in the generation of antitumour immune responses.


Assuntos
Células Apresentadoras de Antígenos , Imunidade Inata , Peptídeos , Animais , Imunidade Inata/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Camundongos , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/efeitos dos fármacos , Humanos , Feminino , Cátions/química , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Receptor Toll-Like 9/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/tratamento farmacológico , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/química
5.
Nat Commun ; 14(1): 6610, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857647

RESUMO

The recent success of mRNA therapeutics against pathogenic infections has increased interest in their use for other human diseases including cancer. However, the precise delivery of the genetic cargo to cells and tissues of interest remains challenging. Here, we show an adaptive strategy that enables the docking of different targeting ligands onto the surface of mRNA-loaded small extracellular vesicles (sEVs). This is achieved by using a microfluidic electroporation approach in which a combination of nano- and milli-second pulses produces large amounts of IFN-γ mRNA-loaded sEVs with CD64 overexpressed on their surface. The CD64 molecule serves as an adaptor to dock targeting ligands, such as anti-CD71 and anti-programmed cell death-ligand 1 (PD-L1) antibodies. The resulting immunogenic sEVs (imsEV) preferentially target glioblastoma cells and generate potent antitumour activities in vivo, including against tumours intrinsically resistant to immunotherapy. Together, these results provide an adaptive approach to engineering mRNA-loaded sEVs with targeting functionality and pave the way for their adoption in cancer immunotherapy applications.


Assuntos
Vesículas Extracelulares , Glioblastoma , Humanos , RNA Mensageiro/genética , Imunoterapia/métodos , Vesículas Extracelulares/genética , Eletroporação
6.
Front Oncol ; 13: 1123082, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213290

RESUMO

Diencephalic tumors tend to be low grade tumors located near several critical structures, including the optic nerves, optic chiasm, pituitary, hypothalamus, Circle of Willis, and hippocampi. In children, damage to these structures can impact physical and cognitive development over time. Thus, the goal of radiotherapy is to maximize long term survival while minimizing late effects, including endocrine disruption leading to precocious puberty, height loss, hypogonadotropic hypogonadism, and primary amenorrhea; visual disruption including blindness; and vascular damage resulting in cerebral vasculopathy. Compared to photon therapy, proton therapy offers the potential to decrease unnecessary dose to these critical structures while maintaining adequate dose to the tumor. In this article, we review the acute and chronic toxicities associated with radiation for pediatric diencephalic tumors, focusing on the use of proton therapy to minimize treatment-related morbidity. Emerging strategies to further reduce radiation dose to critical structures will also be considered.

7.
Int J Radiat Oncol Biol Phys ; 112(2): 335-341, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597719

RESUMO

PURPOSE: Few studies report outcomes in children treated with radiation for nonmyxopapillary ependymoma of the spinal cord, and little evidence exists to inform decisions regarding target volume and prescription dose. Moreover, virtually no mature outcome data exist on proton therapy for this tumor. We describe our combined institutional experience treating pediatric classical/anaplastic ependymoma of the spinal cord with proton therapy. METHODS AND MATERIALS: Between 2008 and 2019, 14 pediatric patients with nonmetastatic nonmyxopapillary grade II (n = 6) and grade III (n = 8) spinal ependymoma received proton therapy. The median age at radiation was 14 years (range, 1.5-18 years). Five tumors arose within the cervical cord, 3 within the thoracic cord, and 6 within the lumbosacral cord. Before radiation therapy, 3 patients underwent subtotal resection, and 11 underwent gross-total or near total resection. Two patients received chemotherapy. For radiation, the clinical target volume received 50.4 Gy (n = 8), 52.2 (n = 1), or 54 Gy (n = 5), with the latter receiving a boost to the gross tumor volume after the initial 50.4 Gy, modified to respect spinal cord tolerance. RESULTS: With a median follow-up of 6.3 years (range, 1.5-14.8 years), no tumors progressed. Although most patients experienced neurologic sequela after surgery, only 1 developed additional neurologic deficits after radiation: An 18-year-old male who received 54 Gy after gross total resection of a lumbosacral tumor developed grade 2 erectile dysfunction. There were 2 cases of musculoskeletal toxicity attributable to surgery and radiation. At analysis, no patient had developed cardiac, pulmonary, or other visceral organ complications or a second malignancy. CONCLUSION: Radiation to a total dose of 50 to 54 Gy can be safely delivered and plays a beneficial role in the multidisciplinary management of children with nonmyxopapillary spinal cord ependymoma. Proton therapy may reduce late radiation effects and is not associated with unexpected spinal cord toxicity.


Assuntos
Ependimoma , Terapia com Prótons , Neoplasias da Medula Espinal , Adolescente , Criança , Pré-Escolar , Ependimoma/patologia , Humanos , Lactente , Masculino , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Estudos Retrospectivos , Medula Espinal/efeitos da radiação , Neoplasias da Medula Espinal/radioterapia , Neoplasias da Medula Espinal/cirurgia , Resultado do Tratamento
8.
J Neurooncol ; 151(1): 29-39, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32757093

RESUMO

INTRODUCTION: Brain tumors remain especially challenging to treat due to the presence of the blood-brain barrier. The unique biophysical properties of nanomaterials enable access to the tumor environment with minimally invasive injection methods such as intranasal and systemic delivery. METHODS: In this review, we will discuss approaches taken in NP delivery to brain tumors in preclinical neuro-oncology studies and ongoing clinical studies. RESULTS: Despite recent development of many promising nanoparticle systems to modulate immunologic function in the preclinical realm, clinical work with nanoparticles in malignant brain tumors has largely focused on imaging, chemotherapy, thermotherapy and radiation. CONCLUSION: Review of early preclinical studies and clinical trials provides foundational safety, feasibility and toxicology data that can usher a new wave of nanotherapeutics in application of immunotherapy and translational oncology for patients with brain tumors.


Assuntos
Neoplasias Encefálicas , Nanopartículas , Adjuvantes Imunológicos/uso terapêutico , Barreira Hematoencefálica , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos , Fatores Imunológicos/uso terapêutico
9.
Cancer Res ; 80(3): 499-509, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31723000

RESUMO

Anti-VEGF therapy prolongs recurrence-free survival in patients with glioblastoma but does not improve overall survival. To address this discrepancy, we investigated immunologic resistance mechanisms to anti-VEGF therapy in glioma models. A screening of immune-associated alterations in tumors after anti-VEGF treatment revealed a dose-dependent upregulation of regulatory T-cell (Treg) signature genes. Enhanced numbers of Tregs were observed in spleens of tumor-bearing mice and later in tumors after anti-VEGF treatment. Elimination of Tregs with CD25 blockade before anti-VEGF treatment restored IFNγ production from CD8+ T cells and improved antitumor response from anti-VEGF therapy. The treated tumors overexpressed the glutamate/cystine antiporter SLC7A11/xCT that led to elevated extracellular glutamate in these tumors. Glutamate promoted Treg proliferation, activation, suppressive function, and metabotropic glutamate receptor 1 (mGlutR1) expression. We propose that VEGF blockade coupled with glioma-derived glutamate induces systemic and intratumoral immunosuppression by promoting Treg overrepresentation and function, which can be pre-emptively overcome through Treg depletion for enhanced antitumor effects. SIGNIFICANCE: Resistance to VEGF therapy in glioblastoma is driven by upregulation of Tregs, combined blockade of VEGF, and Tregs may provide an additive antitumor effect for treating glioblastoma.


Assuntos
Bevacizumab/farmacologia , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/imunologia , Ácido Glutâmico/metabolismo , Linfócitos T Reguladores/imunologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Antineoplásicos Imunológicos/farmacologia , Apoptose , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/metabolismo , Células Tumorais Cultivadas , Fator A de Crescimento do Endotélio Vascular/imunologia
10.
ACS Nano ; 13(12): 13884-13898, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31730332

RESUMO

Cancer vaccines initiate antitumor responses in a subset of patients, but the lack of clinically meaningful biomarkers to predict treatment response limits their development. Here, we design multifunctional RNA-loaded magnetic liposomes to initiate potent antitumor immunity and function as an early biomarker of treatment response. These particles activate dendritic cells (DCs) more effectively than electroporation, leading to superior inhibition of tumor growth in treatment models. Inclusion of iron oxide enhances DC transfection and enables tracking of DC migration with magnetic resonance imaging (MRI). We show that T2*-weighted MRI intensity in lymph nodes is a strong correlation of DC trafficking and is an early predictor of antitumor response. In preclinical tumor models, MRI-predicted "responders" identified 2 days after vaccination had significantly smaller tumors 2-5 weeks after treatment and lived 73% longer than MRI-predicted "nonresponders". These studies therefore provide a simple, scalable nanoparticle formulation to generate robust antitumor immune responses and predict individual treatment outcome with MRI.


Assuntos
Antineoplásicos/farmacologia , Células Dendríticas/metabolismo , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Animais , Biomarcadores Tumorais/metabolismo , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Rastreamento de Células , Células Dendríticas/efeitos dos fármacos , Eletroporação , Compostos Férricos/química , Nanopartículas de Magnetita/ultraestrutura , Camundongos Endogâmicos C57BL , Transfecção
11.
Nat Commun ; 10(1): 4016, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488817

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy targeting solid tumors has stagnated as a result of tumor heterogeneity, immunosuppressive microenvironments, and inadequate intratumoral T cell trafficking and persistence. Early (≤3 days) intratumoral presentation of CAR T cells post-treatment is a superior predictor of survival than peripheral persistence. Therefore, we have co-opted IL-8 release from tumors to enhance intratumoral T-cell trafficking through a CAR design for maximal antitumor activity in solid tumors. Here, we demonstrate that IL-8 receptor, CXCR1 or CXCR2, modified CARs markedly enhance migration and persistence of T cells in the tumor, which induce complete tumor regression and long-lasting immunologic memory in pre-clinical models of aggressive tumors such as glioblastoma, ovarian and pancreatic cancer.


Assuntos
Glioblastoma/imunologia , Imunoterapia Adotiva , Interleucina-8/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/metabolismo , Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/imunologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Camundongos Endogâmicos NOD , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Oncoimmunology ; 6(10): e1290036, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29123947

RESUMO

Conventional cancer treatments remain insufficient to treat many therapy-resistant tumors.1 Cancer vaccines attempt to overcome this resistance by activating the patient's immune system to eliminate tumor cells without the toxicity of systemic chemotherapy and radiation. Nanoparticles (NPs) are promising as customizable, immunostimulatory carriers to protect and deliver antigen. Although many NP vaccines have been investigated in preclinical settings, a few have advanced into clinical application, and still fewer have demonstrated clinical benefit. This review incorporates observations from NP vaccines that have been evaluated in early phase clinical trials to make recommendations for the next generation of NP-based cancer vaccines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA