Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 113(23): 235001, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25526131

RESUMO

The intricate spatial and energy distribution of magnetic fields, self-generated during high power laser irradiation (at Iλ^{2}∼10^{13}-10^{14} W.cm^{-2}.µm^{2}) of a solid target, and of the heat-carrying electron currents, is studied in inertial confinement fusion (ICF) relevant conditions. This is done by comparing proton radiography measurements of the fields to an improved magnetohydrodynamic description that fully takes into account the nonlocality of the heat transport. We show that, in these conditions, magnetic fields are rapidly advected radially along the target surface and compressed over long time scales into the dense parts of the target. As a consequence, the electrons are weakly magnetized in most parts of the plasma flow, and we observe a reemergence of nonlocality which is a crucial effect for a correct description of the energetics of ICF experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA