Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 24: 593-602, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39297161

RESUMO

The approaches used in biomedicine to analyze epidemics take into account features such as exponential growth in the early stages, slowdown in dynamics upon saturation, time delays in spread, segmented spread, evolutionary adaptations of the pathogen, and preventive measures based on universal communication protocols. All these characteristics are also present in modern cyber epidemics. Therefore, adapting effective biomedical approaches to epidemic analysis for the investigation of the development of cyber epidemics is a promising scientific research task. The article is dedicated to researching the problem of predicting the development of cyber epidemics at early stages. In such conditions, the available data is scarce, incomplete, and distorted. This situation makes it impossible to use artificial intelligence models for prediction. Therefore, the authors propose an entropy-extreme model, defined within the machine learning paradigm, to address this problem. The model is based on estimating the probability distributions of its controllable parameters from input data, taking into account the variability characteristic of the last ones. The entropy-extreme instance, identified from a set of such distributions, indicates the most uncertain (most negative) trajectory of the investigated process. Numerical methods are used to analyze the generated set of investigated process development trajectories based on the assessments of probability distributions of the controllable parameters and the variability characteristic. The result of the analysis includes characteristic predictive trajectories such as the average and median trajectories from the set, as well as the trajectory corresponding to the standard deviation area of the parameters' values. Experiments with real data on the infection of Windows-operated devices by various categories of malware showed that the proposed model outperforms the classical competitor (least squares method) in predicting the development of cyber epidemics near the extremum of the time series representing the deployment of such a process over time. Moreover, the proposed model can be applied without any prior hypotheses regarding the probabilistic properties of the available data.

2.
R Soc Open Sci ; 11(7): 240206, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39076361

RESUMO

Rerouting of direct information traffic under the WiMax-1/2 technology control in the case of licensed frequency spectrum overload ensures communication continuity in the smart city's critical infrastructure. The support of such a process in the WiMax-1/2 cluster has its specificity, worthy of analytical formalization. The article presents a mathematical apparatus that allows the average service duration of an information message during its transfer from the terminal to the WiMax-1/2 base station to be estimated. Unlike analogues, the presented concept adequately describes the investigated process for any number of terminals, taking into account both the queuing effect on their side and the functioning of the cumulative query transmission mechanism inherent in WiMax-1/2 technology. Therefore, the proposed mathematical apparatus, describing the process of servicing an information message, takes into account both the average duration accompanied by potential collisions in the process of sending a request for the allocation of communication resources for its transmission to the base station, and the average duration of the information message's stay in the terminal queue. Experimental studies demonstrated the adequacy of the proposed mathematical apparatus for describing the investigated process. The experimental section also formulates the optimization problem of the investigated process resulting from the management of competitive access parameters.

3.
Sci Rep ; 14(1): 14034, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890334

RESUMO

The proliferation of smartphones has catalyzed diverse services, mainly focusing on indoor localization to determine users' and devices' positions within buildings. Despite decades of exploration, the seamless integration of wireless technologies in tracking devices and users has become pivotal in various sectors, including health, industry, disaster management, building operations, and surveillance. Extensive research in laboratory and industrial settings, particularly in wireless sensor networks and robotics, has informed indoor localization techniques. This paper, referencing surveys and original literature reviews, proposes an innovative indoor location system amalgamating GPS and barometer readings. GPS identifies entry through doors, while barometer readings facilitate accurate floor-level tracking. The integration promises continuous real-time location updates, enhancing security, navigation, and emergency response. Notably, the algorithm is infrastructure-independent, relying on the smartphone's barometer, and versatile, detecting elevator travel when Wi-Fi AP or LTE signals are available. Results indicate high accuracy, with building entry exceeding 93%, elevator recognition achieving 75% sensitivity and 97% specificity, and floor change detection surpassing 95% sensitivity and nearly 98% specificity (which translates to nearly 97% accuracy). This comprehensive solution, emphasizing the critical role of precise vertical positioning, signifies an advancement in tracking within urban structures.

4.
Sensors (Basel) ; 24(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38894138

RESUMO

Despite the ability of Low-Power Wide-Area Networks to offer extended range, they encounter challenges with coverage blind spots in the network. This article proposes an innovative energy-efficient and nature-inspired relay selection algorithm for LoRa-based LPWAN networks, serving as a solution for challenges related to poor signal range in areas with limited coverage. A swarm behavior-inspired approach is utilized to select the relays' localization in the network, providing network energy efficiency and radio signal extension. These relays help to bridge communication gaps, significantly reducing the impact of coverage blind spots by forwarding signals from devices with poor direct connectivity with the gateway. The proposed algorithm considers critical factors for the LoRa standard, such as the Spreading Factor and device energy budget analysis. Simulation experiments validate the proposed scheme's effectiveness in terms of energy efficiency under diverse multi-gateway (up to six gateways) network topology scenarios involving thousands of devices (1000-1500). Specifically, it is verified that the proposed approach outperforms a reference method in preventing battery depletion of the relays, which is vital for battery-powered IoT devices. Furthermore, the proposed heuristic method achieves over twice the speed of the exact method for some large-scale problems, with a negligible accuracy loss of less than 2%.

5.
PLoS One ; 19(4): e0299000, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630761

RESUMO

In the article, the extreme problem of finding the optimal placement plan of 5G base stations at certain points within a linear area of finite length is set. A fundamental feature of the author's formulation of the extreme problem is that it takes into account not only the points of potential placement of base stations but also the possibility of selecting instances of stations to be placed at a specific point from a defined excess set, as well as the aspect of inseparable interaction of placed 5G base stations within the framework of SON. The formulation of this extreme problem is brought to the form of a specific combinatorial model. The article proposes an adapted branch-and-bounds method, which allows the process of synthesis of the architecture of a linearly oriented segment of a 5G network to select the best options for the placement of base stations for further evaluation of the received placement plans in the metric of defined performance indicators. As the final stage of the synthesis of the optimal plan of a linearly oriented wireless network segment based on the sequence of the best placements, it is proposed to expand the parametric space of the design task due to the specific technical parameters characteristic of the 5G platform. The article presents a numerical example of solving an instance of the corresponding extremal problem. It is shown that the presented mathematical apparatus allows for the formation of a set of optimal placements taking into account the size of the non-coverage of the target area. To calculate this characteristic parameter, both exact and two approximate approaches are formalized. The results of the experiment showed that for high-dimensional problems, the approximate approach allows for reducing the computational complexity of implementing the adapted branch-and-bounds method by more than six times, with a slight loss of accuracy of the optimal solution. The structure of the article includes Section 1 (introduction and state-of-the-art), Section 2 (statement of the research, proposed models and methods devoted to the research topic), Section 3 (numerical experiment and analysis of results), and Section 4 (conclusions and further research).

6.
PLoS One ; 18(12): e0295252, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38064461

RESUMO

A typical element of the smart city's information and communication space is a 5G cluster, which is focused on serving both new and handover requests because it is an open system. In an ordinary 5G smart city cluster, Ultra-Reliable Low-Latency Communications (URLLC) and enhanced Mobile BroadBand (eMBB) traffic types prevail. The formation of an effective QoS policy for such an object (taking into account the potentially active slicing technology) is an urgent problem. As a baseline, this research considers a Quality of Service (QoS) policy with constraints for context-defined URLLC and eMBB classes of incoming requests. Evaluating the QoS policy instance defined within the framework of the basic concept requires the formalization of both a complete qualitative metric and a computationally efficient mathematical apparatus for its calculation. The article presents accurate and approximate methods of calculating such quality parameters as the probability of loss of typed requests and the utilization ratio of the communication resource, which depend on the implementation of the estimated QoS policy. At the same time, the original parametric space includes both fixed characteristics (amount of available communication resources, load according to request classes) and controlled characteristics due to the specifics of the implementation of the basic QoS concept. The paper empirically proves the adequacy of the presented mathematical apparatus for evaluating the QoS policy defined within the scope of the research. Also, in the proposed qualitative metric, a comparison of the author's concept with a parametrically close analogue (the well-known QoS policy scheme, which takes into account the phenomenon of reservation of communication resources), determined taking into account the reservation of communication resources, was made. The results of the comparison testify in favour of the superiority of the author's approach in the proposed metrics.


Assuntos
Redes de Comunicação de Computadores , Tecnologia sem Fio , Comunicação , Tecnologia , Probabilidade
7.
Sci Rep ; 13(1): 22810, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38129492

RESUMO

Security Information and Event Management (SIEM) technologies play an important role in the architecture of modern cyber protection tools. One of the main scenarios for the use of SIEM is the detection of attacks on protected information infrastructure. Consorting that ISO 27001, NIST SP 800-61, and NIST SP 800-83 standards objectively do not keep up with the evolution of cyber threats, research aimed at forecasting the development of cyber epidemics is relevant. The article proposes a stochastic concept of describing variable small data on the Shannon entropy basis. The core of the concept is the description of small data by linear differential equations with stochastic characteristic parameters. The practical value of the proposed concept is embodied in the method of forecasting the development of a cyber epidemic at an early stage (in conditions of a lack of empirical information). In the context of the research object, the stochastic characteristic parameters of the model are the generation rate, the death rate, and the independent coefficient of variability of the measurement of the initial parameter of the research object. Analytical expressions for estimating the probability distribution densities of these characteristic parameters are proposed. It is assumed that these stochastic parameters of the model are imposed on the intervals, which allows for manipulation of the nature and type of the corresponding functions of the probability distribution densities. The task of finding optimal functions of the probability distribution densities of the characteristic parameters of the model with maximum entropy is formulated. The proposed method allows for generating sets of trajectories of values of characteristic parameters with optimal functions of the probability distribution densities. The example demonstrates both the flexibility and reliability of the proposed concept and method in comparison with the concepts of forecasting numerical series implemented in the base of Matlab functions.

8.
Entropy (Basel) ; 25(12)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38136447

RESUMO

Measurement is a typical way of gathering information about an investigated object, generalized by a finite set of characteristic parameters. The result of each iteration of the measurement is an instance of the class of the investigated object in the form of a set of values of characteristic parameters. An ordered set of instances forms a collection whose dimensionality for a real object is a factor that cannot be ignored. Managing the dimensionality of data collections, as well as classification, regression, and clustering, are fundamental problems for machine learning. Compactification is the approximation of the original data collection by an equivalent collection (with a reduced dimension of characteristic parameters) with the control of accompanying information capacity losses. Related to compactification is the data completeness verifying procedure, which is characteristic of the data reliability assessment. If there are stochastic parameters among the initial data collection characteristic parameters, the compactification procedure becomes more complicated. To take this into account, this study proposes a model of a structured collection of stochastic data defined in terms of relative entropy. The compactification of such a data model is formalized by an iterative procedure aimed at maximizing the relative entropy of sequential implementation of direct and reverse projections of data collections, taking into account the estimates of the probability distribution densities of their attributes. The procedure for approximating the relative entropy function of compactification to reduce the computational complexity of the latter is proposed. To qualitatively assess compactification this study undertakes a formal analysis that uses data collection information capacity and the absolute and relative share of information losses due to compaction as its metrics. Taking into account the semantic connection of compactification and completeness, the proposed metric is also relevant for the task of assessing data reliability. Testing the proposed compactification procedure proved both its stability and efficiency in comparison with previously used analogues, such as the principal component analysis method and the random projection method.

9.
Sci Rep ; 12(1): 16050, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163351

RESUMO

The main contribution of the investigation is the Markov model of the process of resource allocation management between subscribers of eMBB and mMTC services within the 5G cluster. The proposed model, considers the organization of the channel resource in the format of resource blocks. The presented model allows to estimate the average duration of IoT sessions, the average number of active multimedia/IoT sessions, the average number of channel resource units occupied by multimedia/IoT traffic, the average number of resource blocks occupied by multimedia/IoT traffic. The metrics are generalized by three management schemes of the investigated process: balanced, competitive and perspective. The first and third schemes enable static/dynamic distribution of channel resources into reserved and common segments for subscribers of eMBB and mMTC services. The proposed model is illustrated with an example showing how to assess the availability and efficiency of channel resource use of the 5G cluster of the cyber-physical system of the Situation Center of the Department of Information Technology of Vinnytsia City Council (Vinnytsia, Ukraine). The article also shows how to use the proposed model to select the 5G network parameters to keep the probabilities of rejection of multimedia and IoT requests below a set threshold.


Assuntos
Multimídia , Alocação de Recursos , Comunicação , Ucrânia
10.
Sensors (Basel) ; 21(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806434

RESUMO

The synchronization of time between devices is one of the more important and challenging problems in wireless networks. We discuss the problem of maximization of the probability of receiving a message from a device using a limited listening time window to minimize energy utilization. We propose a solution to two important problems in wireless networks of battery-powered devices: a method of establishing a connection with a device that has been disconnected from the system for a long time and developed unknown skew and also two approaches to follow-up clock synchronization using the confidence interval method. We start with the analysis of measurements of clock skew. The algorithms are evaluated using extensive simulations and we discuss the selection of parameters balancing between minimizing the energy utilization and maximizing the probability of reception of the message. We show that the selection of a time window of growing size requires less energy to receive a packet than using the same size of time window repeated multiple times. The shifting of reception windows can further decrease the energy cost if lower packet reception probability is acceptable. We also propose and evaluate an algorithm scaling the reception window size to the interval between the packet transmission.

11.
Sensors (Basel) ; 19(7)2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970665

RESUMO

There are multiple available technologies to find the location of a mobile device, such as the Global Positioning System (GPS), Bluetooth Low-Energy beacons (BLE), and Wireless LAN (WLAN) localization. We propose a novel method to estimate the location of a moving device by aggregating information from multiple positioning systems into a single, more precise location estimation. The aggregated location is calculated as the place in which the product of the probability density functions (PDF) of individual methods has the maximum value. The experimental probability density functions of the three analyzed technologies are fitted by gamma distributions based on error histograms found in the literature and measurement data. The location measurements of the individual technologies are provided at different time instants, so the weighted product of the PDFs is used to improve aggregation accuracy. The discrete event-simulation model was used to evaluate the aggregation method with the Gauss­Markov mobility model. Simulations demonstrated that the calculated aggregated location was more accurate than any of the methods taken as the input, and average error was decreased by almost 13% compared to an arithmetic mean of the three considered localization methods, and by more than 36% compared to the single method with the highest accuracy.

12.
Sensors (Basel) ; 15(9): 22060-88, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26340633

RESUMO

The paper presents a practical application of the crowdsensing idea to measure human mobility and signal coverage in cellular networks. Currently, virtually everyone is carrying a mobile phone, which may be used as a sensor to gather research data by measuring, e.g., human mobility and radio signal levels. However, many users are unwilling to participate in crowdsensing experiments. This work begins with the analysis of the barriers for engaging people in crowdsensing. A survey showed that people who agree to participate in crowdsensing expect a minimum impact on their battery lifetime and phone usage habits. To address these requirements, this paper proposes an application for measuring the location and signal strength data based on energy-efficient GPS tracking, which allows one to perform the measurements of human mobility and radio signal levels with minimum energy utilization and without any engagement of the user. The method described combines measurements from the accelerometer with effective management of the GPS to monitor the user mobility with the decrease in battery lifetime by approximately 20%. To show the applicability of the proposed platform, the sample results of signal level distribution and coverage maps gathered for an LTE network and representing human mobility are shown.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA