Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 97(7): 076103, 2006 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-17026251

RESUMO

High dry friction requires intimate contact between two surfaces and is generally obtained using soft materials with an elastic modulus less than 10 MPa. We demonstrate that high-friction properties similar to rubberlike materials can also be obtained using microfiber arrays constructed from a stiff thermoplastic (polypropylene, 1 GPa). The fiber arrays have a smaller true area of contact than a rubberlike material, but polypropylene's higher interfacial shear strength provides an effective friction coefficient of greater than 5 at normal loads of 8 kPa. At the pressures tested, the fiber arrays showed more than an order of magnitude increase in shear resistance compared to the bulk material. Unlike softer materials, vertical fiber arrays of stiff polymer demonstrate no measurable adhesion on smooth surfaces due to high tensile stiffness.

2.
J Exp Biol ; 209(Pt 18): 3558-68, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16943496

RESUMO

Conventional pressure sensitive adhesives (PSAs) are fabricated from soft viscoelastic materials that satisfy Dahlquist's criterion for tack with a Young's modulus (E) of 100 kPa or less at room temperature and 1 Hz. In contrast, the adhesive on the toes of geckos is made of beta-keratin, a stiff material with E at least four orders of magnitude greater than the upper limit of Dahlquist's criterion. Therefore, one would not expect a beta-keratin structure to function as a PSA by deforming readily to make intimate molecular contact with a variety of surface profiles. However, since the gecko adhesive is a microstructure in the form of an array of millions of high aspect ratio shafts (setae), the effective elastic modulus (E(eff)) is much lower than E of bulk beta-keratin. In the first test of the E(eff) of a gecko setal adhesive, we measured the forces resulting from deformation of isolated arrays of tokay gecko (Gekko gecko) setae during vertical compression, and during tangential compression at angles of +45 degrees and -45 degrees . We tested the hypothesis that E(eff) of gecko setae falls within Dahlquist's criterion for tack, and evaluated the validity of a model of setae as cantilever beams. Highly linear forces of deformation under all compression conditions support the cantilever model. E(eff) of setal arrays during vertical and +45 degrees compression (along the natural path of drag of the setae) were 83+/-4.0 kPa and 86+/-4.4 kPa (means +/- s.e.m.), respectively. Consistent with the predictions of the cantilever model, setae became significantly stiffer when compressed against the natural path of drag: E(eff) during -45 degrees compression was 110+/-4.7 kPa. Unlike synthetic PSAs, setal arrays act as Hookean elastic solids; setal arrays function as a bed of springs with a directional stiffness, assisting alignment of the adhesive spatular tips with the contact surface during shear loading.


Assuntos
Lagartos/anatomia & histologia , Dedos do Pé/anatomia & histologia , Adesividade , Animais , Força Compressiva , Elasticidade , Membro Anterior/anatomia & histologia , Membro Anterior/fisiologia , Fricção , Membro Posterior/anatomia & histologia , Membro Posterior/fisiologia , Lagartos/fisiologia , Modelos Biológicos , Dedos do Pé/fisiologia , beta-Queratinas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA