RESUMO
Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system. Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons. Despite the recognition of potential heterogeneity in mature oligodendrocyte function, a comprehensive summary of mature oligodendrocyte diversity is lacking. We delve into early 20 th -century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes. Indeed, recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences. Furthermore, modern molecular investigations, employing techniques such as single cell/nucleus RNA sequencing, consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region. Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis, Alzheimer's disease, and psychiatric disorders. Nevertheless, caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations. Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity. Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species, sex, central nervous system region, age, and disease, hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.
RESUMO
Mature multiciliated ependymal cells line the cerebral ventricles where they form a partial barrier between the cerebrospinal fluid (CSF) and brain parenchyma and regulate local CSF microcirculation through coordinated ciliary beating. Although the ependyma is a highly specialized brain interface with barrier, trophic, and perhaps even regenerative capacity, it remains a misfit in the canon of glial neurobiology. We provide an update to seminal reviews in the field by conducting a scoping review of the post-2010 mature multiciliated ependymal cell literature. We delineate how recent findings have either called into question or substantiated classical views of the ependymal cell. Beyond this synthesis, we document the basic methodologies and study characteristics used to describe multiciliated ependymal cells since 1980. Our review serves as a comprehensive resource for future investigations of mature multiciliated ependymal cells.
Assuntos
Encéfalo , Cílios , Epêndima , Epêndima/patologia , Humanos , Animais , Cílios/patologia , Cílios/fisiologia , Encéfalo/patologia , AdultoRESUMO
Wilder Penfield is known for his contributions to the structure-function relationship of the brain and for the surgical treatment of focal epilepsy. Less well known are his contributions to the study of glial cells and his investigation of their role in human neuropathology. Penfield learned the gold and silver methods for staining neurons, glial cells, and their projections from Charles Sherrington and Pío del Río-Hortega. He and his colleague William Cone established a laboratory for the study of glial cells and human neuropathology using metallic stains, initially at the Presbyterian Hospital in New York City in 1925, and then at the Montreal Neurological Institute in 1928. Penfield, Cone, and their research fellows, building on the findings of Río-Hortega, confirmed the existence of oligodendrocytes and their relationship with myelin, and investigated the putative mesodermal origin of microglia. They discovered the reaction of oligodendrocytes to pathological stressors, and the phagocytic activity of microglia in human gliomas. In this article, we argue that Penfield's studies of astrocytes, oligodendrocytes, and microglia, and their responses to craniocerebral trauma, epilepsy, malignant brain tumors, and other pathologies of the central nervous system inaugurated a new era in clinical neurocytology and neuropathology.
RESUMO
Digital health technologies (DHTs) have become progressively more integrated into the healthcare of people with multiple sclerosis (MS). To ensure that DHTs meet end-users' needs, it is essential to assess their usability. The objective of this study was to determine how DHTs targeting people with MS incorporate usability characteristics into their design and/or evaluation. We conducted a scoping review of DHT studies in MS published from 2010 to the present using PubMed, Web of Science, OVID Medline, CINAHL, Embase, and medRxiv. Covidence was used to facilitate the review. We included articles that focused on people with MS and/or their caregivers, studied DHTs (including mhealth, telehealth, and wearables), and employed quantitative, qualitative, or mixed methods designs. Thirty-two studies that assessed usability were included, which represents a minority of studies (26%) that assessed DHTs in MS. The most common DHT was mobile applications (n = 23, 70%). Overall, studies were highly heterogeneous with respect to what usability principles were considered and how usability was assessed. These findings suggest that there is a major gap in the application of standardized usability assessments to DHTs in MS. Improvements in the standardization of usability assessments will have implications for the future of digital health care for people with MS.
RESUMO
Ependymal cells form a specialized brain-cerebrospinal fluid (CSF) interface and regulate local CSF microcirculation. It is becoming increasingly recognized that ependymal cells assume a reactive state in response to aging and disease, including conditions involving hypoxia, hydrocephalus, neurodegeneration, and neuroinflammation. Yet what transcriptional signatures govern these reactive states and whether this reactivity shares any similarities with classical descriptions of glial reactivity (i.e., in astrocytes) remain largely unexplored. Using single-cell transcriptomics, we interrogated this phenomenon by directly comparing the reactive ependymal cell transcriptome to the reactive astrocyte transcriptome using a well-established model of autoimmune-mediated neuroinflammation (MOG35-55 EAE). In doing so, we unveiled core glial reactivity-associated genes that defined the reactive ependymal cell and astrocyte response to MOG35-55 EAE. Interestingly, known reactive astrocyte genes from other CNS injury/disease contexts were also up-regulated by MOG35-55 EAE ependymal cells, suggesting that this state may be conserved in response to a variety of pathologies. We were also able to recapitulate features of the reactive ependymal cell state acutely using a classic neuroinflammatory cocktail (IFNγ/LPS) both in vitro and in vivo. Taken together, by comparing reactive ependymal cells and astrocytes, we identified a conserved signature underlying glial reactivity that was present in several neuroinflammatory contexts. Future work will explore the mechanisms driving ependymal reactivity and assess downstream functional consequences.
Assuntos
Astrócitos , Encefalomielite Autoimune Experimental , Epêndima , Camundongos Endogâmicos C57BL , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Epêndima/metabolismo , Epêndima/patologia , Camundongos , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Feminino , Doenças Neuroinflamatórias/patologia , TranscriptomaRESUMO
In multiple sclerosis (MS), the invasion of the central nervous system by peripheral immune cells is followed by the activation of resident microglia and astrocytes. This cascade of events results in demyelination, which triggers neuronal damage and death. The molecular signals in neurons responsible for this damage are not yet fully characterized. In MS, retinal ganglion cell neurons (RGCs) of the central nervous system (CNS) undergo axonal injury and cell death. This phenomenon is mirrored in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS. To understand the molecular landscape, we isolated RGCs from mice subjected to the EAE protocol. RNA-sequencing and ATAC-sequencing analyses were performed. Pathway analysis of the RNA-sequencing data revealed that RGCs displayed a molecular signature, similar to aged neurons, showcasing features of senescence. Single-nucleus RNA-sequencing analysis of neurons from human MS patients revealed a comparable senescence-like phenotype., which was supported by immunostaining RGCs in EAE mice. These changes include alterations to the nuclear envelope, modifications in chromatin marks, and accumulation of DNA damage. Transduction of RGCs with an Oct4 - Sox2 - Klf4 transgene to convert neurons in the EAE model to a more youthful epigenetic and transcriptomic state enhanced the survival of RGCs. Collectively, this research uncovers a previously unidentified senescent-like phenotype in neurons under pathological inflammation and neurons from MS patients. The rejuvenation of this aged transcriptome improved visual acuity and neuronal survival in the EAE model supporting the idea that age rejuvenation therapies and senotherapeutic agents could offer a direct means of neuroprotection in autoimmune disorders.
RESUMO
Ependymal cells make up the epithelial monolayer that lines the brain ventricles and the spinal cord central canal that are filled with cerebrospinal fluid. The ependyma has several functions, including regulating solute exchange between the cerebrospinal fluid and parenchyma, controlling microcirculation of cerebrospinal fluid via coordinated ciliary beating, and acting as a partial barrier. Dysregulation of these functions can lead to waste clearance impairment, cerebrospinal fluid accumulation, hydrocephalus, and more. A role for ependymal cells in a variety of neurological disorders has been proposed, including in neuromyelitis optica and multiple sclerosis, two autoimmune demyelinating diseases of the central nervous system, where periventricular damage is common. What is not known is the mechanisms behind how ependymal cells become dysregulated in these diseases. In neuromyelitis optica, it is well established that autoantibodies directed against Aquaporin-4 are drivers of disease, and it has been shown recently that these autoantibodies can drive ependymal cell dysregulation. We propose a similar mechanism is at play in multiple sclerosis, where autoantibodies targeting a glial cell protein called GlialCAM on ependymal cells are contributing to disease. GlialCAM shares high molecular similarities with the Epstein-Barr virus (EBV) protein EBNA1. EBV has recently been shown to be necessary for multiple sclerosis initiation, yet how EBV mediates pathogenesis, especially in the periventricular area, remains elusive. In this perspective article, we discuss how ependymal cells could be targeted by antibody-related autoimmune mechanisms in autoimmune demyelinating diseases and how this is implicated in ventricular/periventricular pathology.
RESUMO
BACKGROUND: Microglia are tissue resident macrophages with a wide range of critically important functions in central nervous system development and homeostasis. METHOD: In this study, we aimed to characterize the transcriptional landscape of ex vivo human microglia across different developmental ages using cells derived from pre-natal, pediatric, adolescent, and adult brain samples. We further confirmed our transcriptional observations using ELISA and RNAscope. RESULTS: We showed that pre-natal microglia have a distinct transcriptional and regulatory signature relative to their post-natal counterparts that includes an upregulation of phagocytic pathways. We confirmed upregulation of CD36, a positive regulator of phagocytosis, in pre-natal samples compared to adult samples in situ. Moreover, we showed adult microglia have more pro-inflammatory signature compared to microglia from other developmental ages. We indicated that adult microglia are more immune responsive by secreting increased levels of pro-inflammatory cytokines in response to LPS treatment compared to the pre-natal microglia. We further validated in situ up-regulation of IL18 and CXCR4 in human adult brain section compared to the pre-natal brain section. Finally, trajectory analysis indicated that the transcriptional signatures adopted by microglia throughout development are in response to a changing brain microenvironment and do not reflect predetermined developmental states. CONCLUSION: In all, this study provides unique insight into the development of human microglia and a useful reference for understanding microglial contribution to developmental and age-related human disease.
Assuntos
Microglia , Transcriptoma , Humanos , Criança , Adolescente , Microglia/metabolismo , Longevidade , Fagocitose , Análise de Sequência de RNARESUMO
OBJECTIVE: Back pain is an elusive symptom complicated by a variety of possible causes, precipitating and maintaining factors, and consequences. Notably, the underlying pathology remains unknown in a significant number of cases. Changes to the intervertebral disc (IVD) have been associated with back pain, leading many to postulate that the IVD may be a direct source of pain, typically referred to as discogenic back pain. Yet despite decades of research into the neuroanatomy of the IVD, there is a lack of consensus in the literature as to the distribution and function of neural elements within the tissue. The current scoping review provides a comprehensive systematic overview of studies that document the topography, morphology, and immunoreactivity of neural elements within the IVD in humans. METHOD: Articles were retrieved from six separate databases in a three-step systematic search and were independently evaluated by two reviewers. RESULTS: Three categories of neural elements were described within the IVD: perivascular nerves, sensory nerves independent of blood vessels, and mechanoreceptors. Nerves were consistently localized within the outer layers of the annulus fibrosus. Neural ingrowth into the inner annulus fibrosus and nucleus pulposus was found to occur only in degenerative and disease states. CONCLUSION: While the pattern of innervation within the IVD is clear, the specific topographic arrangement and function of neural elements in the context of back pain remains unclear.
Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Disco Intervertebral , Dor nas Costas , HumanosRESUMO
The aortic plexus serves as the primary gateway for sympathetic fibers innervating the pelvic viscera. Damage to this plexus and/or its associated branches can lead to an assortment of neurogenic complications such as bladder dysregulation or retrograde ejaculation. The neuroanatomy of this autonomic plexus has only recently been clarified in humans; as such, the precise function of its constituent fibers is still not clear. Further study into the functional neuroanatomy of the aortic plexus could help refine nerve-sparing surgical procedures that risk debilitating neurogenic complications, while also advancing understanding of peripheral sympathetic circuitry. To this end, the current study employed an in vivo electrostimulation paradigm in a porcine model, in combination with lipophilic neuronal tracing experiments in fixed, post-mortem human tissues, to further characterize the functional neuroanatomy of the aortic plexus. Electrostimulation results demonstrated that caudal lumbar splanchnic nerves provide primary control over the porcine bladder neck in comparison to other constituent fibers within the aortic plexus. Ex vivo human data revealed that the prehypogastric ganglion contains a significant number of neurons projecting to the superior hypogastric plexus, and that these neurons are arranged in a topographic manner within the ganglion. Altogether, these findings suggest that a pivotal sympathetic pathway mediating bladder neck contraction courses through the caudal lumbar splanchnic nerves, prehypogastric and inferior mesenteric ganglia and superior hypogastric plexus.
Assuntos
Plexo Hipogástrico , Neuroanatomia , Animais , Gânglios Simpáticos , Humanos , Masculino , Pelve , Nervos Esplâncnicos , SuínosRESUMO
Anatomy education continues to evolve in health professional programs as curricula shift to competency-based models and contact hours decrease. These changes in curricula may significantly alter the learning environment for students. Importantly, changes in learning environment have been shown to impact student learning strategies and well-being. It follows, then, that an investigation of students' perceptions of the learning environment is key to understand the impact of modern anatomy curriculum alterations. The current pilot study evaluated the impact of modifying examination format on the learning environment of physical therapy students participating in a human cadaveric anatomy course. Two study cohorts of first year (entry-level) physical therapy students were invited to complete a preliminary learning environment questionnaire with 13 visual analog scale items and four short answer items. One study cohort was tested with a viva (oral) practical examination, and the other, with a bell-ringer practical examination. Analysis of quantitative items revealed two significant findings: physical therapy students in the bell-ringer cohort found it was more difficult to prepare for their examination, and that they had inadequate time to respond to questions compared to the viva cohort. Analysis of qualitative items revealed distinct themes that concerned physical therapy student learning environment specific to cadaveric anatomy. These results demonstrate that examination format can influence the learning environment of physical therapy students studying cadaveric anatomy. As a result, care needs to be taken to ensure that modernized curricula align the examination format to the method of instruction and the future application of students' knowledge in clinical practice.
Assuntos
Anatomia , Educação de Graduação em Medicina , Estudantes de Medicina , Anatomia/educação , Cadáver , Currículo , Avaliação Educacional , Humanos , Modalidades de Fisioterapia , Projetos PilotoRESUMO
Background: Surgical excision and/or radiation targeting of regional lymph nodes are an essential component in the clinical management of cancer. Importantly, a more accurate understanding of lymphatic anatomy could enable refinement of present treatment strategies. Given the spatial resolution limitations of contemporary imaging methods, our group sought to utilize noncontrast-enhanced microcomputed tomography (µCT) imaging to clarify regional lymphatic anatomy. Methods and Results: This study was conducted with embalmed en bloc lymphatic tissue packets from six donors (three females and three males: medianage of death = 78 years). All specimens were investigated with noncontrast-enhanced µCT imaging using a conebeam-CT imaging system. Adipose and lymphatic tissues were segmented by radiodensity based on sampling regions of interest. To confirm the observations from µCT, lymph nodes from each packet were exposed to hematoxylin and eosin staining and anti-D240 immunostaining. Following µCT imaging, mean peak radiodensities of -203.14 ± 19.35 Hounsfield units (HU) and 37.25 ± 31.95 HU were revealed for adipose and lymphatic tissues, respectively (p < 0.01). By analyzing histograms of the radiodensity distributions, we determined a threshold of -82.42 HU to differentiate adipose and lymphatic tissue, to generate three-dimensional renderings, and to calculate quantitative metrics. On average, adipose tissue comprised 9.62 ± 3.60 cm3 (73.6%) of the total packet volume, whereas lymphatic tissue comprised 3.47 ± 2.71 cm3 (26.4%). Moreover, each en bloc packet contained four small lymph nodes (1-5 mm) and three to four large lymph nodes (>5 mm). Histology corroborated the observations from µCT. Conclusions: Altogether, a precise understanding of regional lymphatic anatomy elucidated by the present imaging modality may help refine clinical cancer treatment strategies.
Assuntos
Linfonodos , Vasos Linfáticos , Microtomografia por Raio-X , Idoso , Feminino , Humanos , Linfonodos/diagnóstico por imagem , Vasos Linfáticos/diagnóstico por imagem , MasculinoRESUMO
Injury to the nerves of the aortic- and superior hypogastric plexuses during retroperitoneal surgery often results in significant post-operative complications, including retrograde ejaculation and/or loss of seminal emission in males. Although previous characterizations of these plexuses have done well to provide a basis for understanding the typical anatomy, additional research into the common variations of these plexuses could further optimize nerve-sparing techniques for retroperitoneal surgery. To achieve this, the present study aimed to document the prevalence and positional variability of the infrarenal lumbar splanchnic nerves (LSNs) through gross dissection of 26 human cadavers. In almost all cases, two LSNs were observed joining each side of the aortic plexus, with 48% (left) and 33% (right) of specimens also exhibiting a third joining inferior to the left renal vein. As expected, the position of the LSNs varied greatly between specimens. That said, the vast majority (98%) of LSNs joining the aortic plexus were found to originate from the lumbar sympathetic trunk above the level of the inferior mesenteric artery. It was also found that, within specimens, adjacent LSNs often coursed in parallel. In addition to these nerves, 85% of specimens also demonstrated retroaortic LSN(s) that were angled more inferior compared with the other LSNs (Pâ <â 0.05), and exhibited a unique course between the aorta/common iliac arteries and the left common iliac vein before joining the superior hypogastric plexus below the aortic bifurcation. These findings may have significant implications for surgeons attempting nerve-sparing procedures of the sympathetic nerves in the infrarenal retroperitoneum such as retroperitoneal lymphadenectomies. We anticipate that the collective findings of the current study will help improve such retroperitoneal nerve-sparing surgical procedures, which may assist in preserving male ejaculatory function post-operatively.