Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Mater Lett ; 5(4): 1256-1260, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37034385

RESUMO

Shape-memory polymers and alloys are adaptable materials capable of reversing from a deformed, metastable phase to an energetically favored original phase in response to external stimuli. In the context of metal-organic frameworks, the term shape-memory is defined as the property of a switchable framework to stabilize the reopened pore phase after the first switching transition. Herein we describe a novel flexible terpyridine MOF which, upon desolvation, transforms into a nonporous structure that reopens into a shape-memory phase when exposed to CO2 at 195 K. Based on comprehensive in situ experimental studies (SC-XRD and PXRD) and DFT energetic considerations combined with literature reports, we recommend dividing shape-memory MOFs into two categories, viz responsive and nonresponsive, depending on the transformability of the gas-free reopened pore phase into the collapsed phase. Furthermore, considering the methodological gap in discovering and understanding shape-memory porous materials, we emphasize the importance of multicycle physisorption experiments for dynamic open framework materials, including metal-organic and covalent organic frameworks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA