Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Elife ; 112022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35072627

RESUMO

Obesity has repeatedly been linked to reorganization of the gut microbiome, yet to this point obesity therapeutics have been targeted exclusively toward the human host. Here, we show that gut microbe-targeted inhibition of the trimethylamine N-oxide (TMAO) pathway protects mice against the metabolic disturbances associated with diet-induced obesity (DIO) or leptin deficiency (Lepob/ob). Small molecule inhibition of the gut microbial enzyme choline TMA-lyase (CutC) does not reduce food intake but is instead associated with alterations in the gut microbiome, improvement in glucose tolerance, and enhanced energy expenditure. We also show that gut microbial CutC inhibition is associated with reorganization of host circadian control of both phosphatidylcholine and energy metabolism. This study underscores the relationship between microbe and host metabolism and provides evidence that gut microbe-derived trimethylamine (TMA) is a key regulator of the host circadian clock. This work also demonstrates that gut microbe-targeted enzyme inhibitors have potential as anti-obesity therapeutics.


Assuntos
Colina/análogos & derivados , Ritmo Circadiano/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/metabolismo , Animais , Colina/administração & dosagem , Colina/metabolismo , Dieta Hiperlipídica , Inibidores Enzimáticos/farmacologia , Leptina/deficiência , Liases/efeitos dos fármacos , Masculino , Metilaminas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/microbiologia
2.
Immunometabolism ; 3(4)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804604

RESUMO

BACKGROUND: A major contributor to cardiometabolic disease is caloric excess, often a result of consuming low cost, high calorie fast food. Studies have demonstrated the pivotal role of gut microbes contributing to cardiovascular disease in a diet-dependent manner. Given the central contributions of diet and gut microbiota to cardiometabolic disease, we hypothesized that microbial metabolites originating after fast food consumption can elicit acute metabolic responses in the liver. METHODS: We gave conventionally raised mice or mice that had their microbiomes depleted with antibiotics a single oral gavage of a liquified fast food meal or liquified control rodent chow meal. After four hours, mice were sacrificed and we used untargeted metabolomics of portal and peripheral blood, 16S rRNA gene sequencing, targeted liver metabolomics, and host liver RNA sequencing to identify novel fast food-derived microbial metabolites and their acute effects on liver function. RESULTS: Several candidate microbial metabolites were enriched in portal blood upon fast food feeding, and were essentially absent in antibiotic-treated mice. Strikingly, at four hours post-gavage, fast food consumption resulted in rapid reorganization of the gut microbial community and drastically altered hepatic gene expression. Importantly, diet-driven reshaping of the microbiome and liver transcriptome was dependent on an intact microbial community and not observed in antibiotic ablated animals. CONCLUSIONS: Collectively, these data suggest a single fast food meal is sufficient to reshape the gut microbial community in mice, yielding a unique signature of food-derived microbial metabolites. Future studies are in progress to determine the contribution of select metabolites to cardiometabolic disease progression and the translational relevance of these animal studies.

3.
Acta Neuropathol Commun ; 9(1): 101, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059134

RESUMO

Glioblastoma (GBM) displays marked cellular and metabolic heterogeneity that varies among cellular microenvironments within a tumor. Metabolic targeting has long been advocated as a therapy against many tumors including GBM, but how lipid metabolism is altered to suit different microenvironmental conditions and whether cancer stem cells (CSCs) have altered lipid metabolism are outstanding questions in the field. We interrogated gene expression in separate microenvironments of GBM organoid models that mimic the transition between nutrient-rich and nutrient-poor pseudopalisading/perinecrotic tumor zones using spatial-capture RNA-sequencing. We revealed a striking difference in lipid processing gene expression and total lipid content between diverse cell populations from the same patient, with lipid enrichment in hypoxic organoid cores and also in perinecrotic and pseudopalisading regions of primary patient tumors. This was accompanied by regionally restricted upregulation of hypoxia-inducible lipid droplet-associated (HILPDA) gene expression in organoid cores and pseudopalisading regions of clinical GBM specimens, but not lower-grade brain tumors. CSCs have low lipid droplet accumulation compared to non-CSCs in organoid models and xenograft tumors, and prospectively sorted lipid-low GBM cells are functionally enriched for stem cell activity. Targeted lipidomic analysis of multiple patient-derived models revealed a significant shift in lipid metabolism between GBM CSCs and non-CSCs, suggesting that lipid levels may not be simply a product of the microenvironment but also may be a reflection of cellular state. CSCs had decreased levels of major classes of neutral lipids compared to non-CSCs, but had significantly increased polyunsaturated fatty acid production due to high fatty acid desaturase (FADS1/2) expression which was essential to maintain CSC viability and self-renewal. Our data demonstrate spatially and hierarchically distinct lipid metabolism phenotypes occur clinically in the majority of patients, can be recapitulated in laboratory models, and may represent therapeutic targets for GBM.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Metabolismo dos Lipídeos/fisiologia , Células-Tronco Neoplásicas/metabolismo , Organoides/metabolismo , Microambiente Tumoral/fisiologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Células-Tronco Neoplásicas/patologia , Organoides/patologia , Células Tumorais Cultivadas
4.
J Nutr ; 150(4): 775-783, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31851339

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death in the world. Choline deficiency has been well studied in the context of liver disease; however, less is known about the effects of choline supplementation in HCC. OBJECTIVE: The objective of this study was to test whether choline supplementation could influence the progression of HCC in a high-fat-diet (HFD)-driven mouse model. METHODS: Four-day-old male C57BL/6J mice were treated with the chemical carcinogen, 7,12-dimethylbenz[a]anthracene, and were randomly assigned at weaning to a cohort fed an HFD (60% kcal fat) or an HFD with supplemental choline (60% kcal fat, 1.2% choline; HFD+C) for 30 wk. Blood was isolated at 15 and 30 wk to measure immune cells by flow cytometry, and glucose-tolerance tests were performed 2 wk prior to killing. Overall tumor burden was quantified, hepatic lipids were measured enzymatically, and phosphatidylcholine species were measured by targeted MS methods. Gene expression and mitochondrial DNA were quantified by quantitative PCR. RESULTS: HFD+C mice exhibited a 50-90% increase in both circulating choline and betaine concentrations in the fed state (P ≤ 0.05). Choline supplementation resulted in a 55% decrease in total tumor numbers, a 67% decrease in tumor surface area, and a 50% decrease in hepatic steatosis after 30 wk of diet (P ≤ 0.05). Choline supplementation increased the abundance of mitochondria and the relative expression of ß-oxidation genes by 21% and ∼75-100%, respectively, in the liver. HFD+C attenuated circulating myeloid-derived suppressor cells at 15 wk of feeding (P ≤ 0.05). CONCLUSIONS: Choline supplementation attenuated HFD-induced HCC and hepatic steatosis in male C57BL/6J mice. These results suggest a therapeutic benefit of choline supplementation in blunting HCC progression.


Assuntos
Colina/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Neoplasias Hepáticas Experimentais/prevenção & controle , Neoplasias Hepáticas/prevenção & controle , Animais , Betaína/sangue , Colina/sangue , DNA Mitocondrial/análise , Suplementos Nutricionais , Fígado Gorduroso/prevenção & controle , Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Fígado/química , Fígado/patologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/etiologia , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/patologia , Tamanho do Órgão/efeitos dos fármacos
5.
Elife ; 82019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31621579

RESUMO

Recent studies have identified a genetic variant rs641738 near two genes encoding membrane bound O-acyltransferase domain-containing 7 (MBOAT7) and transmembrane channel-like 4 (TMC4) that associate with increased risk of non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), alcohol-related cirrhosis, and liver fibrosis in those infected with viral hepatitis (Buch et al., 2015; Mancina et al., 2016; Luukkonen et al., 2016; Thabet et al., 2016; Viitasalo et al., 2016; Krawczyk et al., 2017; Thabet et al., 2017). Based on hepatic expression quantitative trait loci analysis, it has been suggested that MBOAT7 loss of function promotes liver disease progression (Buch et al., 2015; Mancina et al., 2016; Luukkonen et al., 2016; Thabet et al., 2016; Viitasalo et al., 2016; Krawczyk et al., 2017; Thabet et al., 2017), but this has never been formally tested. Here we show that Mboat7 loss, but not Tmc4, in mice is sufficient to promote the progression of NAFLD in the setting of high fat diet. Mboat7 loss of function is associated with accumulation of its substrate lysophosphatidylinositol (LPI) lipids, and direct administration of LPI promotes hepatic inflammatory and fibrotic transcriptional changes in an Mboat7-dependent manner. These studies reveal a novel role for MBOAT7-driven acylation of LPI lipids in suppressing the progression of NAFLD.


Assuntos
Aciltransferases/genética , Proteínas de Membrana/genética , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/genética , Acilação , Animais , Progressão da Doença , Humanos , Camundongos
6.
Cancer Discov ; 9(9): 1248-1267, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31201181

RESUMO

Glioblastoma ranks among the most aggressive and lethal of all human cancers. Functionally defined glioma stem cells (GSC) contribute to this poor prognosis by driving therapeutic resistance and maintaining cellular heterogeneity. To understand the molecular processes essential for GSC maintenance and tumorigenicity, we interrogated the superenhancer landscapes of primary glioblastoma specimens and in vitro GSCs. GSCs epigenetically upregulated ELOVL2, a key polyunsaturated fatty-acid synthesis enzyme. Targeting ELOVL2 inhibited glioblastoma cell growth and tumor initiation. ELOVL2 depletion altered cellular membrane phospholipid composition, disrupted membrane structural properties, and diminished EGFR signaling through control of fatty-acid elongation. In support of the translational potential of these findings, dual targeting of polyunsaturated fatty-acid synthesis and EGFR signaling had a combinatorial cytotoxic effect on GSCs. SIGNIFICANCE: Glioblastoma remains a devastating disease despite extensive characterization. We profiled epigenomic landscapes of glioblastoma to pinpoint cell state-specific dependencies and therapeutic vulnerabilities. GSCs utilize polyunsaturated fatty-acid synthesis to support membrane architecture, inhibition of which impairs EGFR signaling and GSC proliferation. Combinatorial targeting of these networks represents a promising therapeutic strategy.See related commentary by Affronti and Wellen, p. 1161.This article is highlighted in the In This Issue feature, p. 1143.


Assuntos
Neoplasias Encefálicas/patologia , Elementos Facilitadores Genéticos , Elongases de Ácidos Graxos/genética , Glioblastoma/patologia , Células-Tronco Neoplásicas/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Epigênese Genética , Receptores ErbB/metabolismo , Ácidos Graxos Insaturados/biossíntese , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Histonas/metabolismo , Humanos , Metilação , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais , Regulação para Cima
7.
J Nutr Biochem ; 58: 169-177, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29957361

RESUMO

The activation of NLRP3 inflammasome in innate immune cells is associated with enhanced production of pro-inflammatory lipid mediator eicosanoids that play a crucial role in propagating inflammation. Gamma-tocotrienol (γT3) is an unsaturated vitamin E that has been demonstrated to attenuate NLRP3-inflammasome. However, the role of γT3 in regulating eicosanoid formation is unknown. We hypothesized that γT3 abolishes the eicosanoid production by modulating the macrophage lipidome. LPS-primed bone marrow-derived macrophages (BMDM) were stimulated with saturated fatty acids (SFA) along with γT3, and the effects of γT3 in modulating macrophage lipidome were quantified by using mass spectrometry based-shotgun lipidomic approaches. The SFA-mediated inflammasome activation induced robust changes in lipid species of glycerolipids (GL), glycerophospholipids (GPL), and sphingolipids in BMDM, which were distinctly different in the γT3-treated BMDM. The γT3 treatment caused substantial decreases of lysophospholipids (LysoPL), diacylglycerol (DAG), and free arachidonic acid (AA, C20:4), indicating that γT3 limits the availability of AA, the precursor for eicosanoids. This was confirmed by the pulse-chase experiment using [3H]-AA, and by diminished prostaglandin E2 (PGE2) secretion by ELISA. Concurrently, γT3 inhibited LPS-induced cyclooxygenases 2 (COX2) induction, further suppressing prostaglandin synthesis. In addition, γT3 attenuated ceramide synthesis by transcriptional downregulation of key enzymes for de novo synthesis. The altered lipid metabolism during inflammation is linked to reduced ATP production, which was partly rescued by γT3. Taken together, our work revealed that γT3 induces distinct modification of the macrophage lipidome to reduce AA release and corresponding lipid mediator synthesis, leading to attenuated cellular lipotoxicity.


Assuntos
Inflamassomos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Esfingolipídeos/metabolismo , gama-Tocoferol/farmacologia , Animais , Ácido Araquidônico/metabolismo , Ceramidas/metabolismo , Dinoprostona/metabolismo , Eicosanoides/metabolismo , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/farmacologia , Inflamassomos/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos C57BL , Palmitatos/farmacologia
8.
Arterioscler Thromb Vasc Biol ; 38(1): 218-231, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29074585

RESUMO

OBJECTIVE: Human genetic variants near the FADS (fatty acid desaturase) gene cluster (FADS1-2-3) are strongly associated with cardiometabolic traits including dyslipidemia, fatty liver, type 2 diabetes mellitus, and coronary artery disease. However, mechanisms underlying these genetic associations are unclear. APPROACH AND RESULTS: Here, we specifically investigated the physiological role of the Δ-5 desaturase FADS1 in regulating diet-induced cardiometabolic phenotypes by treating hyperlipidemic LDLR (low-density lipoprotein receptor)-null mice with antisense oligonucleotides targeting the selective knockdown of Fads1. Fads1 knockdown resulted in striking reorganization of both ω-6 and ω-3 polyunsaturated fatty acid levels and their associated proinflammatory and proresolving lipid mediators in a highly diet-specific manner. Loss of Fads1 activity promoted hepatic inflammation and atherosclerosis, yet was associated with suppression of hepatic lipogenesis. Fads1 knockdown in isolated macrophages promoted classic M1 activation, whereas suppressing alternative M2 activation programs, and also altered systemic and tissue inflammatory responses in vivo. Finally, the ability of Fads1 to reciprocally regulate lipogenesis and inflammation may rely in part on its role as an effector of liver X receptor signaling. CONCLUSIONS: These results position Fads1 as an underappreciated regulator of inflammation initiation and resolution, and suggest that endogenously synthesized arachidonic acid and eicosapentaenoic acid are key determinates of inflammatory disease progression and liver X receptor signaling.


Assuntos
Aorta/enzimologia , Doenças da Aorta/enzimologia , Aterosclerose/enzimologia , Dislipidemias/enzimologia , Ácidos Graxos Dessaturases/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/enzimologia , Lipogênese , Animais , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Ácido Araquidônico/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Células Cultivadas , Dessaturase de Ácido Graxo Delta-5 , Modelos Animais de Doenças , Dislipidemias/genética , Dislipidemias/patologia , Ácido Eicosapentaenoico/metabolismo , Ácidos Graxos Dessaturases/genética , Inflamação/genética , Inflamação/patologia , Fígado/metabolismo , Receptores X do Fígado/metabolismo , Ativação de Macrófagos , Macrófagos Peritoneais/enzimologia , Macrófagos Peritoneais/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Placa Aterosclerótica , Receptores de LDL/deficiência , Receptores de LDL/genética
10.
Cell Rep ; 19(12): 2451-2461, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28636934

RESUMO

Emerging evidence suggests that microbes resident in the human intestine represent a key environmental factor contributing to obesity-associated disorders. Here, we demonstrate that the gut microbiota-initiated trimethylamine N-oxide (TMAO)-generating pathway is linked to obesity and energy metabolism. In multiple clinical cohorts, systemic levels of TMAO were observed to strongly associate with type 2 diabetes. In addition, circulating TMAO levels were associated with obesity traits in the different inbred strains represented in the Hybrid Mouse Diversity Panel. Further, antisense oligonucleotide-mediated knockdown or genetic deletion of the TMAO-producing enzyme flavin-containing monooxygenase 3 (FMO3) conferred protection against obesity in mice. Complimentary mouse and human studies indicate a negative regulatory role for FMO3 in the beiging of white adipose tissue. Collectively, our studies reveal a link between the TMAO-producing enzyme FMO3 and obesity and the beiging of white adipose tissue.


Assuntos
Metilaminas/sangue , Obesidade/enzimologia , Oxigenases/fisiologia , Gordura Subcutânea/enzimologia , Adipócitos Bege/enzimologia , Animais , Diabetes Mellitus Tipo 2/sangue , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/sangue , Obesidade/patologia , Gordura Subcutânea/patologia , Gordura Subcutânea/fisiopatologia
11.
Cell Rep ; 16(4): 939-949, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27396333

RESUMO

Adipose triglyceride lipase (ATGL) and comparative gene identification 58 (CGI-58) are critical regulators of triacylglycerol (TAG) turnover. CGI-58 is thought to regulate TAG mobilization by stimulating the enzymatic activity of ATGL. However, it is not known whether this coactivation function of CGI-58 occurs in vivo. Moreover, the phenotype of human CGI-58 mutations suggests ATGL-independent functions. Through direct comparison of mice with single or double deficiency of CGI-58 and ATGL, we show here that CGI-58 knockdown causes hepatic steatosis in both the presence and absence of ATGL. CGI-58 also regulates hepatic diacylglycerol (DAG) and inflammation in an ATGL-independent manner. Interestingly, ATGL deficiency, but not CGI-58 deficiency, results in suppression of the hepatic and adipose de novo lipogenic program. Collectively, these findings show that CGI-58 regulates hepatic neutral lipid storage and inflammation in the genetic absence of ATGL, demonstrating that mechanisms driving TAG lipolysis in hepatocytes differ significantly from those in adipocytes.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Lipase/metabolismo , Fígado/metabolismo , Triglicerídeos/metabolismo , Adipócitos/metabolismo , Animais , Diglicerídeos/metabolismo , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Humanos , Inflamação/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipogênese/fisiologia , Lipólise/fisiologia , Masculino , Camundongos , Camundongos Knockout
12.
J Nat Prod ; 79(3): 598-606, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-26905523

RESUMO

Two new compounds, namely, a para-benzoquinone ring-containing abietane (1) and a para-benzoquinone ring-containing 7,8-seco-abietane (2), and 14 other known highly oxidized abietane diterpenoids (3-16) were isolated from an extract prepared from the cones of Taxodium distichum, collected in central Ohio. The active subfraction from which all compounds isolated in this study were purified was tested in vivo using Leishmania donovani-infected mice and was found to dose-dependently reduce the parasite burden in the murine livers after iv administration of this crude mixture at 5.6 and 11.1 mg/kg. The structures of 1 and 2 were established by detailed 1D- and 2D-NMR experiments, HRESIMS data, and electronic circular dichroism studies. Compounds 3 and 4 were each fully characterized spectroscopically and also isolated from a natural source for the first time. Compounds 2-16 were tested in vitro against L. donovani promastigotes and L. amazonensis intracellular amastigotes. Compound 2 was the most active against L. amazonensis amastigotes (IC50 = 1.4 µM), and 10 was the most potent against L. donovani promastigotes (IC50 = 1.6 µM). These compounds may be suggested for further studies such as in vivo experimentation either alone or in combination with other Taxodium isolates.


Assuntos
Abietanos/isolamento & purificação , Abietanos/farmacologia , Leishmania donovani/efeitos dos fármacos , Taxodium/química , Abietanos/química , Animais , Benzoquinonas/química , Concentração Inibidora 50 , Camundongos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Ohio , Oxirredução
13.
Cell Rep ; 10(3): 326-338, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25600868

RESUMO

Circulating levels of the gut microbe-derived metabolite trimethylamine-N-oxide (TMAO) have recently been linked to cardiovascular disease (CVD) risk. Here, we performed transcriptional profiling in mouse models of altered reverse cholesterol transport (RCT) and serendipitously identified the TMAO-generating enzyme flavin monooxygenase 3 (FMO3) as a powerful modifier of cholesterol metabolism and RCT. Knockdown of FMO3 in cholesterol-fed mice alters biliary lipid secretion, blunts intestinal cholesterol absorption, and limits the production of hepatic oxysterols and cholesteryl esters. Furthermore, FMO3 knockdown stimulates basal and liver X receptor (LXR)-stimulated macrophage RCT, thereby improving cholesterol balance. Conversely, FMO3 knockdown exacerbates hepatic endoplasmic reticulum (ER) stress and inflammation in part by decreasing hepatic oxysterol levels and subsequent LXR activation. FMO3 is thus identified as a central integrator of hepatic cholesterol and triacylglycerol metabolism, inflammation, and ER stress. These studies suggest that the gut microbiota-driven TMA/FMO3/TMAO pathway is a key regulator of lipid metabolism and inflammation.

14.
PLoS One ; 9(6): e98953, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24901470

RESUMO

The primary risk factor for atherosclerotic cardiovascular disease is LDL cholesterol, which can be reduced by increasing cholesterol excretion from the body. Fecal cholesterol excretion can be driven by a hepatobiliary as well as a non-biliary pathway known as transintestinal cholesterol efflux (TICE). We previously showed that chronic knockdown of the hepatic cholesterol esterifying enzyme sterol O-acyltransferase 2 (SOAT2) increased fecal cholesterol loss via TICE. To elucidate the initial events that stimulate TICE, C57Bl/6 mice were fed a high cholesterol diet to induce hepatic cholesterol accumulation and were then treated for 1 or 2 weeks with an antisense oligonucleotide targeting SOAT2. Within 2 weeks of hepatic SOAT2 knockdown (SOAT2HKD), the concentration of cholesteryl ester in the liver was reduced by 70% without a reciprocal increase in hepatic free cholesterol. The rapid mobilization of hepatic cholesterol stores resulted in a ∼ 2-fold increase in fecal neutral sterol loss but no change in biliary cholesterol concentration. Acute SOAT2HKD increased plasma cholesterol carried primarily in lipoproteins enriched in apoB and apoE. Collectively, our data suggest that acutely reducing SOAT2 causes hepatic cholesterol to be swiftly mobilized and packaged onto nascent lipoproteins that feed cholesterol into the TICE pathway for fecal excretion.


Assuntos
Colesterol/metabolismo , Fezes/química , Esterol O-Aciltransferase/metabolismo , Animais , Apolipoproteínas B/metabolismo , Apolipoproteínas E/metabolismo , Bile/metabolismo , Colesterol/análise , Colesterol/sangue , Ésteres do Colesterol/metabolismo , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Dieta Hiperlipídica , Feminino , Vesícula Biliar/metabolismo , Intestino Delgado/metabolismo , Lipoproteínas/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oligonucleotídeos Antissenso/farmacologia , RNA Mensageiro/metabolismo , Esterol O-Aciltransferase/antagonistas & inibidores , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase 2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA