Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
2.
R Soc Open Sci ; 10(2): 221234, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36778955

RESUMO

The productivity of a common pool of resources may degrade when overly exploited by a number of selfish investors, a situation known as the tragedy of the commons. Without regulations, agents optimize the size of their individual investments into the commons by balancing incurring costs with the returns received. The resulting Nash equilibrium involves a self-consistency loop between individual investment decisions and the state of the commons. As a consequence, several non-trivial properties emerge. For N investing actors we prove rigorously that typical payoffs do not scale as 1/N, the expected result for cooperating agents, but as (1/N)2. Payoffs are hence reduced with regard to the functional dependence on N, a situation denoted catastrophic poverty. We show that catastrophic poverty results from a fine-tuned balance between returns and costs. Additionally, a finite number of oligarchs may be present. Oligarchs are characterized by payoffs that are finite and not decreasing when N increases. Our results hold for generic classes of models, including convex and moderately concave cost functions. For strongly concave cost functions the Nash equilibrium undergoes a collective reorganization, being characterized instead by entry barriers and sudden death forced market exits.

3.
R Soc Open Sci ; 9(1): 211055, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35116144

RESUMO

We propose a simple rule of thumb for countries which have embarked on a vaccination campaign while still facing the need to keep non-pharmaceutical interventions (NPI) in place because of the ongoing spread of SARS-CoV-2. If the aim is to keep the death rate from increasing, NPIs can be loosened when it is possible to vaccinate more than twice the growth rate of new cases. If the aim is to keep the pressure on hospitals under control, the vaccination rate has to be about four times higher. These simple rules can be derived from the observation that the risk of death or a severe course requiring hospitalization from a COVID-19 infection increases exponentially with age and that the sizes of age cohorts decrease linearly at the top of the population pyramid. Protecting the over 60-year-olds, which constitute approximately one-quarter of the population in Europe (and most OECD countries), reduces the potential loss of life by 95 percent.

4.
Socioecon Plann Sci ; 81: 101196, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34812204

RESUMO

We analyse 'stop-and-go' containment policies that produce infection cycles as periods of tight lockdowns are followed by periods of falling infection rates. The subsequent relaxation of containment measures allows cases to increase again until another lockdown is imposed and the cycle repeats. The policies followed by several European countries during the Covid-19 pandemic seem to fit this pattern. We show that 'stop-and-go' should lead to lower medical costs than keeping infections at the midpoint between the highs and lows produced by 'stop-and-go'. Increasing the upper and reducing the lower limits of a stop-and-go policy by the same amount would lower the average medical load. But increasing the upper and lowering the lower limit while keeping the geometric average constant would have the opposite effect. We also show that with economic costs proportional to containment, any path that brings infections back to the original level (technically a closed cycle) has the same overall economic cost.

5.
Front Comput Neurosci ; 15: 726247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970130

RESUMO

Biological as well as advanced artificial intelligences (AIs) need to decide which goals to pursue. We review nature's solution to the time allocation problem, which is based on a continuously readjusted categorical weighting mechanism we experience introspectively as emotions. One observes phylogenetically that the available number of emotional states increases hand in hand with the cognitive capabilities of animals and that raising levels of intelligence entail ever larger sets of behavioral options. Our ability to experience a multitude of potentially conflicting feelings is in this view not a leftover of a more primitive heritage, but a generic mechanism for attributing values to behavioral options that can not be specified at birth. In this view, emotions are essential for understanding the mind. For concreteness, we propose and discuss a framework which mimics emotions on a functional level. Based on time allocation via emotional stationarity (TAES), emotions are implemented as abstract criteria, such as satisfaction, challenge and boredom, which serve to evaluate activities that have been carried out. The resulting timeline of experienced emotions is compared with the "character" of the agent, which is defined in terms of a preferred distribution of emotional states. The long-term goal of the agent, to align experience with character, is achieved by optimizing the frequency for selecting individual tasks. Upon optimization, the statistics of emotion experience becomes stationary.

6.
Front Comput Neurosci ; 15: 718020, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421566

RESUMO

Cortical pyramidal neurons have a complex dendritic anatomy, whose function is an active research field. In particular, the segregation between its soma and the apical dendritic tree is believed to play an active role in processing feed-forward sensory information and top-down or feedback signals. In this work, we use a simple two-compartment model accounting for the nonlinear interactions between basal and apical input streams and show that standard unsupervised Hebbian learning rules in the basal compartment allow the neuron to align the feed-forward basal input with the top-down target signal received by the apical compartment. We show that this learning process, termed coincidence detection, is robust against strong distractions in the basal input space and demonstrate its effectiveness in a linear classification task.

7.
PLoS One ; 16(4): e0247272, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33793551

RESUMO

The distinct ways the COVID-19 pandemic has been unfolding in different countries and regions suggest that local societal and governmental structures play an important role not only for the baseline infection rate, but also for short and long-term reactions to the outbreak. We propose to investigate the question of how societies as a whole, and governments in particular, modulate the dynamics of a novel epidemic using a generalization of the SIR model, the reactive SIR (short-term and long-term reaction) model. We posit that containment measures are equivalent to a feedback between the status of the outbreak and the reproduction factor. Short-term reaction to an outbreak corresponds in this framework to the reaction of governments and individuals to daily cases and fatalities. The reaction to the cumulative number of cases or deaths, and not to daily numbers, is captured in contrast by long-term reaction. We present the exact phase space solution of the controlled SIR model and use it to quantify containment policies for a large number of countries in terms of short and long-term control parameters. We find increased contributions of long-term control for countries and regions in which the outbreak was suppressed substantially together with a strong correlation between the strength of societal and governmental policies and the time needed to contain COVID-19 outbreaks. Furthermore, for numerous countries and regions we identified a predictive relation between the number of fatalities within a fixed period before and after the peak of daily fatality counts, which allows to gauge the cumulative medical load of COVID-19 outbreaks that should be expected after the peak. These results suggest that the proposed model is applicable not only for understanding the outbreak dynamics, but also for predicting future cases and fatalities once the effectiveness of outbreak suppression policies is established with sufficient certainty. Finally, we provide a web app (https://itp.uni-frankfurt.de/covid-19/) with tools for visualising the phase space representation of real-world COVID-19 data and for exporting the preprocessed data for further analysis.


Assuntos
COVID-19/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Modelos Estatísticos , Pandemias , COVID-19/mortalidade , Previsões , Humanos , Distanciamento Físico , Quarentena
8.
Sci Rep ; 11(1): 6848, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767222

RESUMO

The rapid spread of the Coronavirus (COVID-19) confronts policy makers with the problem of measuring the effectiveness of containment strategies, balancing public health considerations with the economic costs of social distancing measures. We introduce a modified epidemic model that we name the controlled-SIR model, in which the disease reproduction rate evolves dynamically in response to political and societal reactions. An analytic solution is presented. The model reproduces official COVID-19 cases counts of a large number of regions and countries that surpassed the first peak of the outbreak. A single unbiased feedback parameter is extracted from field data and used to formulate an index that measures the efficiency of containment strategies (the CEI index). CEI values for a range of countries are given. For two variants of the controlled-SIR model, detailed estimates of the total medical and socio-economic costs are evaluated over the entire course of the epidemic. Costs comprise medical care cost, the economic cost of social distancing, as well as the economic value of lives saved. Under plausible parameters, strict measures fare better than a hands-off policy. Strategies based on current case numbers lead to substantially higher total costs than strategies based on the overall history of the epidemic.


Assuntos
COVID-19/prevenção & controle , Controle de Custos , Custos de Cuidados de Saúde , Pandemias/economia , SARS-CoV-2/isolamento & purificação , Número Básico de Reprodução , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Surtos de Doenças , Humanos , Modelos Estatísticos , Distanciamento Físico
9.
Front Comput Neurosci ; 15: 587721, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732127

RESUMO

Recurrent cortical networks provide reservoirs of states that are thought to play a crucial role for sequential information processing in the brain. However, classical reservoir computing requires manual adjustments of global network parameters, particularly of the spectral radius of the recurrent synaptic weight matrix. It is hence not clear if the spectral radius is accessible to biological neural networks. Using random matrix theory, we show that the spectral radius is related to local properties of the neuronal dynamics whenever the overall dynamical state is only weakly correlated. This result allows us to introduce two local homeostatic synaptic scaling mechanisms, termed flow control and variance control, that implicitly drive the spectral radius toward the desired value. For both mechanisms the spectral radius is autonomously adapted while the network receives and processes inputs under working conditions. We demonstrate the effectiveness of the two adaptation mechanisms under different external input protocols. Moreover, we evaluated the network performance after adaptation by training the network to perform a time-delayed XOR operation on binary sequences. As our main result, we found that flow control reliably regulates the spectral radius for different types of input statistics. Precise tuning is however negatively affected when interneural correlations are substantial. Furthermore, we found a consistent task performance over a wide range of input strengths/variances. Variance control did however not yield the desired spectral radii with the same precision, being less consistent across different input strengths. Given the effectiveness and remarkably simple mathematical form of flow control, we conclude that self-consistent local control of the spectral radius via an implicit adaptation scheme is an interesting and biological plausible alternative to conventional methods using set point homeostatic feedback controls of neural firing.

10.
Entropy (Basel) ; 23(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33514037

RESUMO

Human societies are characterized by three constituent features, besides others. (A) Options, as for jobs and societal positions, differ with respect to their associated monetary and non-monetary payoffs. (B) Competition leads to reduced payoffs when individuals compete for the same option as others. (C) People care about how they are doing relatively to others. The latter trait -the propensity to compare one's own success with that of others- expresses itself as envy. It is shown that the combination of (A)-(C) leads to spontaneous class stratification. Societies of agents split endogenously into two social classes, an upper and a lower class, when envy becomes relevant. A comprehensive analysis of the Nash equilibria characterizing a basic reference game is presented. Class separation is due to the condensation of the strategies of lower-class agents, which play an identical mixed strategy. Upper-class agents do not condense, following individualist pure strategies. The model and results are size-consistent, holding for arbitrary large numbers of agents and options. Analytic results are confirmed by extensive numerical simulations. An analogy to interacting confined classical particles is discussed.

11.
R Soc Open Sci ; 7(10): 201626, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33204487

RESUMO

[This corrects the article DOI: 10.1098/rsos.200411.].

12.
R Soc Open Sci ; 7(6): 200411, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32742696

RESUMO

Envy, the inclination to compare rewards, can be expected to unfold when inequalities in terms of pay-off differences are generated in competitive societies. It is shown that increasing levels of envy lead inevitably to a self-induced separation into a lower and an upper class. Class stratification is Nash stable and strict, with members of the same class receiving identical rewards. Upper-class agents play exclusively pure strategies, all lower-class agents the same mixed strategy. The fraction of upper-class agents decreases progressively with larger levels of envy, until a single upper-class agent is left. Numerical simulations and a complete analytic treatment of a basic reference model, the shopping trouble model, are presented. The properties of the class-stratified society are universal and only indirectly controllable through the underlying utility function, which implies that class-stratified societies are intrinsically resistant to political control. Implications for human societies are discussed. It is pointed out that the repercussions of envy are amplified when societies become increasingly competitive.

13.
R Soc Open Sci ; 6(8): 190944, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31598259

RESUMO

Analysing the timeline of US, UK, German and Dutch music charts, we find that the evolution of album lifetimes and of the size of weekly rank changes provide evidence for an acceleration of cultural processes. For most of the past five decades, number one albums needed more than a month to climb to the top, nowadays an album is in contrast top ranked either from the start, or not at all. Over the last three decades, the number of top-listed albums increased as a consequence from roughly a dozen per year, to about 40. The distribution of album lifetimes evolved during the last decades from a log-normal distribution to a power law, a profound change. Presenting an information-theoretical approach to human activities, we suggest that the fading relevance of personal time horizons may be causing this phenomenon. Furthermore, we find that sales and airplay- based charts differ statistically and that the inclusion of streaming affects chart diversity adversely. We point out in addition that opinion dynamics may accelerate not only in cultural domains, as found here, but also in other settings, in particular in politics, where it could have far reaching consequences.

14.
PLoS One ; 14(6): e0217004, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31216272

RESUMO

Behavior is characterized by sequences of goal oriented conducts, such as food uptake, socializing and resting. Classically, one would define for each task a corresponding satisfaction level, with the agent engaging, at a given time, in the activity having the lowest satisfaction level. Alternatively, one may consider that the agent follows the overarching objective to generate sequences of distinct activities. To achieve a balanced distribution of activities would then be the primary goal, and not to master a specific task. In this setting the agent would show two types of behaviors, task-oriented and task-searching phases, with the latter interseeding the former. We study the emergence of autonomous task switching for the case of a simulated robot arm. Grasping one of several moving objects corresponds in this setting to a specific activity. Overall, the arm should follow a given object temporarily and then move away, in order to search for a new target and reengage. We show that this behavior can be generated robustly when modeling the arm as an adaptive dynamical system. The dissipation function is in this approach time dependent. The arm is in a dissipative state when searching for a nearby object, dissipating energy on approach. Once close, the dissipation function starts to increase, with the eventual sign change implying that the arm will take up energy and wander off. The resulting explorative state ends when the dissipation function becomes again negative and the arm selects a new target. We believe that our approach may be generalized to generate self-organized sequences of activities in general.


Assuntos
Objetivos , Robótica , Extremidade Superior , Movimento (Física)
15.
Front Neurorobot ; 12: 40, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30050427

RESUMO

Self-organized robots may develop attracting states within the sensorimotor loop, that is within the phase space of neural activity, body and environmental variables. Fixpoints, limit cycles and chaotic attractors correspond in this setting to a non-moving robot, to directed, and to irregular locomotion respectively. Short higher-order control commands may hence be used to kick the system from one self-organized attractor robustly into the basin of attraction of a different attractor, a concept termed here as kick control. The individual sensorimotor states serve in this context as highly compliant motor primitives. We study different implementations of kick control for the case of simulated and real-world wheeled robots, for which the dynamics of the distinct wheels is generated independently by local feedback loops. The feedback loops are mediated by rate-encoding neurons disposing exclusively of propriosensoric inputs in terms of projections of the actual rotational angle of the wheel. The changes of the neural activity are then transmitted into a rotational motion by a simulated transmission rod akin to the transmission rods used for steam locomotives. We find that the self-organized attractor landscape may be morphed both by higher-level control signals, in the spirit of kick control, and by interacting with the environment. Bumping against a wall destroys the limit cycle corresponding to forward motion, with the consequence that the dynamical variables are then attracted in phase space by the limit cycle corresponding to backward moving. The robot, which does not dispose of any distance or contact sensors, hence reverses direction autonomously.

16.
R Soc Open Sci ; 5(5): 180167, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29892451

RESUMO

We point out that the Nobel prize production of the USA, the UK, Germany and France has been in numbers that are large enough to allow for a reliable analysis of the long-term historical developments. Nobel prizes are often split, such that up to three awardees receive a corresponding fractional prize. The historical trends for the fractional number of Nobelists per population are surprisingly robust, indicating in particular that the maximum Nobel productivity peaked in the 1970s for the USA and around 1900 for both France and Germany. The yearly success rates of these three countries are to date of the order of 0.2-0.3 physics, chemistry and medicine laureates per 100 million inhabitants, with the US value being a factor of 2.4 down from the maximum attained in the 1970s. The UK in contrast managed to retain during most of the last century a rate of 0.9-1.0 science Nobel prizes per year and per 100 million inhabitants. For the USA, one finds that the entire history of science Noble prizes is described on a per capita basis to an astonishing accuracy by a single large productivity boost decaying at a continuously accelerating rate since its peak in 1972.

17.
Sci Rep ; 8(1): 8939, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895972

RESUMO

Spontaneous brain activity is characterized in part by a balanced asynchronous chaotic state. Cortical recordings show that excitatory (E) and inhibitory (I) drivings in the E-I balanced state are substantially larger than the overall input. We show that such a state arises naturally in fully adapting networks which are deterministic, autonomously active and not subject to stochastic external or internal drivings. Temporary imbalances between excitatory and inhibitory inputs lead to large but short-lived activity bursts that stabilize irregular dynamics. We simulate autonomous networks of rate-encoding neurons for which all synaptic weights are plastic and subject to a Hebbian plasticity rule, the flux rule, that can be derived from the stationarity principle of statistical learning. Moreover, the average firing rate is regulated individually via a standard homeostatic adaption of the bias of each neuron's input-output non-linear function. Additionally, networks with and without short-term plasticity are considered. E-I balance may arise only when the mean excitatory and inhibitory weights are themselves balanced, modulo the overall activity level. We show that synaptic weight balance, which has been considered hitherto as given, naturally arises in autonomous neural networks when the here considered self-limiting Hebbian synaptic plasticity rule is continuously active.

18.
Sci Rep ; 7(1): 1087, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28439074

RESUMO

For a chaotic system pairs of initially close-by trajectories become eventually fully uncorrelated on the attracting set. This process of decorrelation can split into an initial exponential decrease and a subsequent diffusive process on the chaotic attractor causing the final loss of predictability. Both processes can be either of the same or of very different time scales. In the latter case the two trajectories linger within a finite but small distance (with respect to the overall extent of the attractor) for exceedingly long times and remain partially predictable. Standard tests for chaos widely use inter-orbital correlations as an indicator. However, testing partially predictable chaos yields mostly ambiguous results, as this type of chaos is characterized by attractors of fractally broadened braids. For a resolution we introduce a novel 0-1 indicator for chaos based on the cross-distance scaling of pairs of initially close trajectories. This test robustly discriminates chaos, including partially predictable chaos, from laminar flow. Additionally using the finite time cross-correlation of pairs of initially close trajectories, we are able to identify laminar flow as well as strong and partially predictable chaos in a 0-1 manner solely from the properties of pairs of trajectories.

19.
Front Neurorobot ; 10: 12, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27803661

RESUMO

We examine the hypothesis, that short-term synaptic plasticity (STSP) may generate self-organized motor patterns. We simulated sphere-shaped autonomous robots, within the LPZRobots simulation package, containing three weights moving along orthogonal internal rods. The position of a weight is controlled by a single neuron receiving excitatory input from the sensor, measuring its actual position, and inhibitory inputs from the other two neurons. The inhibitory connections are transiently plastic, following physiologically inspired STSP-rules. We find that a wide palette of motion patterns are generated through the interaction of STSP, robot, and environment (closed-loop configuration), including various forward meandering and circular motions, together with chaotic trajectories. The observed locomotion is robust with respect to additional interactions with obstacles. In the chaotic phase the robot is seemingly engaged in actively exploring its environment. We believe that our results constitute a concept of proof that transient synaptic plasticity, as described by STSP, may potentially be important for the generation of motor commands and for the emergence of complex locomotion patterns, adapting seamlessly also to unexpected environmental feedback. We observe spontaneous and collision induced mode switchings, finding in addition, that locomotion may follow transiently limit cycles which are otherwise unstable. Regular locomotion corresponds to stable limit cycles in the sensorimotor loop, which may be characterized in turn by arbitrary angles of propagation. This degeneracy is, in our analysis, one of the drivings for the chaotic wandering observed for selected parameter settings, which is induced by the smooth diffusion of the angle of propagation.

20.
Front Comput Neurosci ; 10: 98, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27708572

RESUMO

The study of balanced networks of excitatory and inhibitory neurons has led to several open questions. On the one hand it is yet unclear whether the asynchronous state observed in the brain is autonomously generated, or if it results from the interplay between external drivings and internal dynamics. It is also not known, which kind of network variabilities will lead to irregular spiking and which to synchronous firing states. Here we show how isolated networks of purely excitatory neurons generically show asynchronous firing whenever a minimal level of structural variability is present together with a refractory period. Our autonomous networks are composed of excitable units, in the form of leaky integrators spiking only in response to driving currents, remaining otherwise quiet. For a non-uniform network, composed exclusively of excitatory neurons, we find a rich repertoire of self-induced dynamical states. We show in particular that asynchronous drifting states may be stabilized in purely excitatory networks whenever a refractory period is present. Other states found are either fully synchronized or mixed, containing both drifting and synchronized components. The individual neurons considered are excitable and hence do not dispose of intrinsic natural firing frequencies. An effective network-wide distribution of natural frequencies is however generated autonomously through self-consistent feedback loops. The asynchronous drifting state is, additionally, amenable to an analytic solution. We find two types of asynchronous activity, with the individual neurons spiking regularly in the pure drifting state, albeit with a continuous distribution of firing frequencies. The activity of the drifting component, however, becomes irregular in the mixed state, due to the periodic driving of the synchronized component. We propose a new tool for the study of chaos in spiking neural networks, which consists of an analysis of the time series of pairs of consecutive interspike intervals. In this space, we show that a strange attractor with a fractal dimension of about 1.8 is formed in the mentioned mixed state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA