Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Adv ; 9(41): eadg5109, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831776

RESUMO

Pancreatic carcinoma lacks effective therapeutic strategies resulting in poor prognosis. Transcriptional dysregulation due to alterations in KRAS and MYC affects initiation, development, and survival of this tumor type. Using patient-derived xenografts of KRAS- and MYC-driven pancreatic carcinoma, we show that coinhibition of topoisomerase 1 (TOP1) and bromodomain-containing protein 4 (BRD4) synergistically induces tumor regression by targeting promoter pause release. Comparing the nascent transcriptome with the recruitment of elongation and termination factors, we found that coinhibition of TOP1 and BRD4 disrupts recruitment of transcription termination factors. Thus, RNA polymerases transcribe downstream of genes for hundreds of kilobases leading to readthrough transcription. This occurs during replication, perturbing replisome progression and inducing DNA damage. The synergistic effect of TOP1 + BRD4 inhibition is specific to cancer cells leaving normal cells unaffected, highlighting the tumor's vulnerability to transcriptional defects. This preclinical study provides a mechanistic understanding of the benefit of combining TOP1 and BRD4 inhibitors to treat pancreatic carcinomas addicted to oncogenic drivers of transcription and replication.


Assuntos
Neoplasias Pancreáticas , Fatores de Transcrição , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , DNA Topoisomerases Tipo I/metabolismo , Neoplasias Pancreáticas
3.
Sci Adv ; 8(49): eabq0648, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36490343

RESUMO

DNA topoisomerase 1 (TOP11) inhibitors are mainstays of anticancer therapy. These drugs trap TOP1 on DNA, stabilizing the TOP1-cleavage complex (TOP1-cc). The accumulation of TOP1-ccs perturbs DNA replication fork progression, leading to DNA breaks and cell death. By analyzing the genomic occupancy and activity of TOP1, we show that cells adapt to treatment with multiple doses of TOP1 inhibitor by promoting the degradation of TOP1-ccs, allowing cells to better tolerate subsequent doses of TOP1 inhibitor. The E3-RING Cullin 3 ligase in complex with the BTBD1 and BTBD2 adaptor proteins promotes TOP1-cc ubiquitination and subsequent proteasomal degradation. NEDDylation of Cullin 3 activates this pathway, and inhibition of protein NEDDylation or depletion of Cullin 3 sensitizes cancer cells to TOP1 inhibitors. Collectively, our data uncover a previously unidentified NEDD8-Cullin 3 pathway involved in the adaptive response to TOP1 inhibitors, which can be targeted to improve the efficacy of TOP1 drugs in cancer therapy.


Assuntos
Inibidores da Topoisomerase I , Ubiquitina-Proteína Ligases , Inibidores da Topoisomerase I/farmacologia , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo
4.
Mol Cell ; 81(24): 5007-5024.e9, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34767771

RESUMO

As cells enter mitosis, chromatin compacts to facilitate chromosome segregation yet remains transcribed. Transcription supercoils DNA to levels that can impede further progression of RNA polymerase II (RNAPII) unless it is removed by DNA topoisomerase 1 (TOP1). Using ChIP-seq on mitotic cells, we found that TOP1 is required for RNAPII translocation along genes. The stimulation of TOP1 activity by RNAPII during elongation allowed RNAPII clearance from genes in prometaphase and enabled chromosomal segregation. Disruption of the TOP1-RNAPII interaction impaired RNAPII spiking at promoters and triggered defects in the post-mitotic transcription program. This program includes factors necessary for cell growth, and cells with impaired TOP1-RNAPII interaction are more sensitive to inhibitors of mTOR signaling. We conclude that TOP1 is necessary for assisting transcription during mitosis with consequences for growth and gene expression long after mitosis is completed. In this sense, TOP1 ensures that cellular memory is preserved in subsequent generations.


Assuntos
Proliferação de Células , Montagem e Desmontagem da Cromatina , Neoplasias Colorretais/enzimologia , DNA Topoisomerases Tipo I/metabolismo , Fase G1 , Mitose , RNA Polimerase II/metabolismo , Transcrição Gênica , Proliferação de Células/efeitos dos fármacos , Sequenciamento de Cromatina por Imunoprecipitação , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , DNA Topoisomerases Tipo I/genética , Fase G1/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Inibidores de MTOR/farmacologia , Mitose/efeitos dos fármacos , RNA Polimerase II/genética
5.
PLoS Genet ; 17(9): e1009763, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34499654

RESUMO

The structural maintenance of chromosome (SMC) complex cohesin mediates sister chromatid cohesion established during replication, and damage-induced cohesion formed in response to DSBs post-replication. The translesion synthesis polymerase Polη is required for damage-induced cohesion through a hitherto unknown mechanism. Since Polη is functionally associated with transcription, and transcription triggers de novo cohesion in Schizosaccharomyces pombe, we hypothesized that transcription facilitates damage-induced cohesion in Saccharomyces cerevisiae. Here, we show dysregulated transcriptional profiles in the Polη null mutant (rad30Δ), where genes involved in chromatin assembly and positive transcription regulation were downregulated. In addition, chromatin association of RNA polymerase II was reduced at promoters and coding regions in rad30Δ compared to WT cells, while occupancy of the H2A.Z variant (Htz1) at promoters was increased in rad30Δ cells. Perturbing histone exchange at promoters inactivated damage-induced cohesion, similarly to deletion of the RAD30 gene. Conversely, altering regulation of transcription elongation suppressed the deficient damage-induced cohesion in rad30Δ cells. Furthermore, transcription inhibition negatively affected formation of damage-induced cohesion. These results indicate that the transcriptional deregulation of the Polη null mutant is connected with its reduced capacity to establish damage-induced cohesion. This also suggests a linkage between regulation of transcription and formation of damage-induced cohesion after replication.


Assuntos
Proteínas de Ciclo Celular/biossíntese , Proteínas Cromossômicas não Histona/biossíntese , DNA Polimerase Dirigida por DNA/genética , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Transcrição Gênica , Cromatina/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Mutação , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , TATA Box , Coesinas
6.
Nat Methods ; 18(9): 1068-1074, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34480152

RESUMO

In general, mRNAs are assumed to be loaded with ribosomes instantly upon entry into the cytoplasm. To measure ribosome density (RD) on nascent mRNA, we developed nascent Ribo-Seq by combining Ribo-Seq with progressive 4-thiouridine labeling. In mouse macrophages, we determined experimentally the lag between the appearance of nascent mRNA and its association with ribosomes, which was calculated to be 20-22 min for bulk mRNA. In mouse embryonic stem cells, nRibo-Seq revealed an even stronger lag of 35-38 min in ribosome loading. After stimulation of macrophages with lipopolysaccharide, the lag between cytoplasmic and translated mRNA leads to uncoupling between input and ribosome-protected fragments, which gives rise to distorted RD measurements under conditions where mRNA amounts are far from steady-state expression. As a result, we demonstrate that transcriptional changes affect RD in a passive way.


Assuntos
Biossíntese de Proteínas , Ribossomos/genética , Ribossomos/metabolismo , Análise de Sequência de RNA/métodos , Animais , Citoplasma/genética , Cinética , Lipopolissacarídeos/farmacologia , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/fisiologia , Células RAW 264.7 , RNA Mensageiro/genética , Proteínas Ribossômicas/biossíntese , Proteínas Ribossômicas/genética , Ribossomos/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA