Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Front Robot AI ; 10: 1137750, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064575

RESUMO

Surveying active nuclear facilities for spread of alpha and beta contamination is currently performed by human operators. However, a skills gap of qualified workers is emerging and is set to worsen in the near future due to under recruitment, retirement and increased demand. This paper presents an autonomous ground vehicle that can survey nuclear facilities for alpha, beta and gamma radiation and generate radiation heatmaps. New methods for preventing the robot from spreading radioactive contamination using a state-machine and radiation costmaps are introduced. This is the first robot that can detect alpha and beta contamination and autonomously re-plan around the contamination without the wheels passing over the contaminated area. Radiation avoidance functionality is proven experimentally to reduce alpha and beta contamination spread as well as gamma radiation dose to the robot. The robot's survey area is defined using a custom designed, graphically controlled area coverage planner. It was concluded that the robot is highly suited to certain monotonous room scale radiation surveying tasks and therefore provides the opportunity for financial savings, to mitigate a future skills gap, and provision of radiation surveys that are more granular, accurate and repeatable than those currently performed by human operators.

3.
Front Robot AI ; 9: 862067, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368431

RESUMO

Humans in hazardous environments take actions to reduce unnecessary risk, including limiting exposure to radioactive materials where ionising radiation can be a threat to human health. Robots can adopt the same approach of risk avoidance to minimise exposure to radiation, therefore limiting damage to electronics and materials. Reducing a robot's exposure to radiation results in longer operational lifetime and better return on investment for nuclear sector stakeholders. This work achieves radiation avoidance through the use of layered costmaps, to inform path planning algorithms of this additional risk. Interpolation of radiation observations into the configuration space of the robot is accomplished using an inverse distance weighting approach. This technique was successfully demonstrated using an unmanned ground vehicle running the Robot Operating System equipped with compatible gamma radiation sensors, both in simulation and in real-world mock inspection missions, where the vehicle was exposed to radioactive materials in Lancaster University's Neutron Laboratory. The addition of radiation avoidance functionality was shown to reduce total accumulated dose to background levels in real-world deployment and up to a factor of 10 in simulation.

4.
Sensors (Basel) ; 20(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143242

RESUMO

The inspection of aquatic environments is a challenging activity, which is made more difficult if the environment is complex or confined, such as those that are found in nuclear storage facilities and accident sites, marinas and boatyards, liquid storage tanks, or flooded tunnels and sewers. Human inspections of these environments are often dangerous or infeasible, so remote inspection using unmanned underwater vehicles (UUVs) is used. Due to access restrictions and environmental limitations, such as low illumination levels, turbidity, and a lack of salient features, traditional localisation systems that have been developed for use in large bodies of water cannot be used. This means that UUV capabilities are severely restricted to manually controlled low-quality visual inspections, generating non-geospatially located data. The localisation of UUVs in these environments would enable the autonomous behaviour and the development of accurate maps. This article presents a review of the state-of-the-art in localisation technologies for these environments and identifies areas of future research to overcome the challenges posed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA