Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dalton Trans ; 52(43): 16061-16066, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37850531

RESUMO

Phosphinoborenium cations stabilized by N-heterocyclic carbenes (NHCs) were synthesized via the reaction of bromo(phosphino)boranes with NHCs. Their structures were investigated by heteronuclear magnetic resonance spectroscopy, X-ray diffraction, and density functional theory calculations. They possess a planar trigonal boron center directly bonded with the pyramidal phosphanyl group (PR2) and can be treated as cationic phosphinoboranes. The reactivity of the selected NHC-phosphinoborenium cation was tested toward AuCl·SMe2 and Ph2PCl. In both reactions, the titled compound acted as a phosphido group donor under heterolytic cleavage of the P-B bond. Control experiments with parent phosphinoborane emphasized differences between the reactivity of low-coordinate neutral and cationic species with P-B functionality.

2.
Dalton Trans ; 52(24): 8311-8315, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37255331

RESUMO

The concept of nonmetallic frustrated cations has been used in small molecule activation. The in situ generated ambiphilic phosphinoborinium cation activated phenyl isocyanate, diisopropylcarbodiimide, and acetonitrile under very mild conditions without any catalyst, yielding single-, double-, or mixed-activation products. Furthermore, the mechanisms of the reactions of the phosphinoborinium cation with small molecules were elucidated using density functional theory calculations.

3.
Dalton Trans ; 52(13): 4161-4166, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36891892

RESUMO

Triphosphinoboranes activated the B-H bond in the BH3 molecule without any catalysts at room temperature. Hydroboration reactions led to boraphosphacyloalkanes with diverse structures. The outcomes of reactions depend on the size of the phosphanyl substituent on the boron atom of the parent triphosphinoborane, where derivatives of boraphosphacyclobutane and boraphosphacyclohexane were obtained. Furthermore, the precursor of triphosphinoboranes, namely bromodiphosphinoborane, also exhibited high reactivity towards H3B·SMe2, yielding bromo-substituted boraphosphacyclobutane. The obtained products were characterized by heteronuclear NMR spectroscopy, single crystal X-ray diffraction, and elemental analysis.

4.
Inorg Chem ; 61(49): 19925-19932, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36453123

RESUMO

Herein, we present a simple synthesis of mixed-valent phosphinophosphoranes bearing three- and five-coordinate phosphorus centers. Compounds with phosphorus-phosphorus bonds were synthesized via a reaction of lithium phosphides RR'PLi with cat2PCl (cat = catecholate), whereas derivatives with methylene-linked phosphorus centers were obtained via a reaction of phosphanylmethanides RR'CH2Li with cat2PCl. The presence of accessible lone-pair electrons on the P-phosphanyl atom of phosphinophosphoranes during the reaction of the title compounds with H3B·SMe2, where phosphinophosphorane-borane adducts were formed quantitatively, was confirmed. Furthermore, the Lewis basic and Lewis acidic properties of the phosphinophosphoranes in reactions with phenyl isothiocyanate were tested. Depending on the structure of the starting phosphinophosphorane, phosphinophosphorylation of PhNCS or formation of a five-membered zwitterionic adduct was observed. The structures of the isolated compounds were unambiguously determined by heteronuclear nuclear magnetic resonance spectroscopy and single-crystal X-ray diffraction. Moreover, by applying density functional theory calculations, we compared the Lewis basicity and nucleophilicity of diversified trivalent P-centers.


Assuntos
Compostos de Fósforo , Cristalografia por Raios X , Fósforo/química , Elétrons , Espectroscopia de Ressonância Magnética , Lítio
5.
Chem Commun (Camb) ; 58(72): 10068-10071, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35993273

RESUMO

Herein, we report access to phosphinoborinium cations via heterolytic cleavage of the boron-bromide bond in bromophosphinoborane. The product of the reaction was isolated as a dimeric dication possessing a planar B2P2 core. Activation of the C-H and C-P bonds in the dication led to the formation of the borinium-phosphaborene adduct. Reactivity studies revealed that the title cation exhibits ambiphilic properties and intramolecular frustrated Lewis pair features.

6.
Inorg Chem ; 61(25): 9523-9532, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35700273

RESUMO

We present a comprehensive study on the diphosphanation of iso(thio)cyanates by unsymmetrical diphosphanes. The reactions involving unsymmetrical diphosphanes and phenyl isocyanate or phenyl thioisocyanate gave rise to phosphanyl, phosphoryl, and thiophosphoryl derivatives of amides, imines, and iminoamides. The structures of the diphosphanation products were confirmed through NMR spectroscopy, IR spectroscopy, and single-crystal X-ray diffraction. We showed that unsymmetrical diphosphanes could be used as building blocks to synthesize phosphorus analogues of important classes of organic molecules. The described transformations provided a new methodology for the synthesis of organophosphorus compounds bearing phosphanyl, phosphoryl, or thiophosphoryl functional groups. Moreover, theoretical studies on diphosphanation reactions explained the influence of the steric and electronic properties of the parent diphosphanes on the structures of the diphosphanation products.

7.
Inorg Chem ; 61(10): 4361-4370, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35220712

RESUMO

Herein, we present the synthesis of the first fully characterized monomeric triphosphinoboranes. The simple reaction of boron tribromide with 3 equiv of bulky lithium phosphide tBu2PLi yielded triphosphinoborane (tBu2P)3B. Triphosphinoboranes with diversified phosphanyl substituents were obtained via a two-step reaction, in which isolable bromodiphosphinoborane (tBu2P)2BBr is first formed and then reacts with 1 equiv of less bulky phosphide R2PLi (R2P = Cy2P, iPr2P, tBuPhP, or Ph2P). By utilizing this method, we obtained a series of triphosphinoboranes with the general formula (tBu2P)2BPR2. On the basis of structural and theoretical studies, two main types of triphosphinoborane structures can be distinguished. In the first type, all three electron lone pairs interact with the formally empty p orbital of the central boron atom, resulting in delocalized π bonding, whereas in the second type, one localized P═B bond and two P-B bonds are observed. The Lewis acidic-basic properties of triphosphinoboranes during the reaction of (tBu2P)2BPiPr2 with H3B·SMe2 were analyzed. The P-B bond-containing compound mentioned above not only formed an adduct with BH3 but also activated the B-H bond of the borane molecule, resulting in the incorporation of the BH2 unit into two phosphorus atoms and migration of a hydride to the boron atom of the parent triphosphinoborane. The structures of the triphosphinoboranes were confirmed by single-crystal X-ray analysis, multinuclear nuclear magnetic resonance spectroscopy, and elemental analysis.

8.
Inorg Chem ; 60(6): 3794-3806, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33657801

RESUMO

Herein, we present the first example of the activation of small molecules by P-B-P bond systems. The reactivity study involves reactions of two selected diphosphinoboranes, (t-Bu2P)2BPh (1') and (Cy2P)2BNiPr2 (2), that differ in terms of their structural and electronic properties for the activation of dihydrogen, carbon dioxide, and phenyl isocyanate. Diphosphinoborane 1' activates H2 under very mild conditions in the absence of a catalyst with the formation of the dimer (t-Bu2PB(Ph)H)2 and t-Bu2PH. Conversely, diphosphinoborane 2 did not react with H2 under the same conditions. The reaction of 1' with CO2 led to the formation of a compound with an unusual structure, where two phosphinoformate units were coordinated to the PhBOBPh moiety. In addition, 2 reacted with CO2 to insert two CO2 molecules into the P-B bonds of the parent diphosphinoborane. Both diphosphinoboranes activated PhNCO, yielding products resulting from the addition of two and/or three PhNCO molecules and the formation of new P-C, B-O, B-N, and C-N bonds. The products of the activation of small molecules by diphosphinoboranes were characterized with nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy, single-crystal X-ray diffraction, and elemental analysis. Additionally, the reaction mechanisms of the activation of small molecules by diphosphinoboranes were elucidated by theoretical methods.

9.
Dalton Trans ; 49(29): 10091-10103, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32661526

RESUMO

We report the first series of homoleptic phosphido iron complexes synthesized by treating either the ß-diketiminato complex [(Dippnacnac)FeCl2Li(dme)2] (Dippnacnac = HC[(CMe)N(C6H3-2,6-iPr2)]2) or [FeBr2(thf)2] with an excess of phosphides R2PLi (R = tBu, tBuPh, Cy, iPr). Reaction outcomes depend strongly on the bulkiness of the phosphido ligands. The use of tBu2PLi precursor led to an anionic diiron complex 1 encompassing a planar Fe2P2 core with two bridging and two terminal phosphido ligands. An analogous reaction employing less sterically demanding phosphides, tBuPhPLi and Cy2PLi yielded diiron anionic complexes 2 and 3, respectively, featuring a short Fe-Fe interaction supported by three bridging phosphido groups and one additional terminal R2P- ligand at each iron center. Further tuning of the P-substrates bulkiness gave a neutral phosphido complex 4 possessing a tetrahedral Fe4 cluster core held together by six bridging iPr2P moieties. Moreover, we also describe the first homoleptic phosphanylphosphido iron complex 5, which features an iron center with low coordination provided by three tBu2P-P(SiMe3)- ligands. The structures of compounds 1-5 were determined by single-crystal X-ray diffraction and 1-3 by 1H NMR spectroscopy. Moreover, the electronic structures of 1-3 were interrogated using zero-field Mössbauer spectroscopy and DFT methods.

10.
Inorg Chem ; 59(9): 6332-6337, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32286811

RESUMO

Herein, we present the first transformation of borylphosphine into borylphosphinite using nitrous oxide. Borylphosphine reacts with N2O via insertion of a single oxygen atom into the P-B bond and formation of a P-O-B bond system. Borylphosphine and borylphosphinite capture SO2 and activate it in an irreversible and reversible manner, respectively.

11.
Inorg Chem ; 59(8): 5463-5474, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32216307

RESUMO

The reactivities of phosphanylphosphinidene complexes [(DippN)2W(Cl)(η2-P-PtBu2)]- (1), [(pTol3P)2Pt(η2-P═PtBu2)] (2), and [(dppe)Pt(η2-P═PtBu2)] (3) toward dihaloalkanes and methyl iodide were investigated. The reactions of the anionic tungsten complex (1) with stochiometric Br(CH2)nBr (n = 3, 4, 6) led to the formation of neutral complexes with a tBu2PP(CH2)3Br ligand or neutral dinuclear complexes with unusual tetradentate tBu2PP(CH2)nPPtBu2 ligands (n = 4, 6). The methylation of platinum complexes 2 and 3 with MeI yielded neutral or cationic complexes bearing side-on coordinated tBu2P-P-Me moieties. The reaction of 2 with I(CH2)2I gave a platinum complex with a tBu2P-P-I ligand. When the same dihaloalkane was reacted with 3, the P-P bond in the phosphanylphosphinidene ligand was cleaved to yield tBu2PI, phosphorus polymers, [(dppe)PtI2] and C2H4. Furthermore, the reaction of 3 with Br(CH2)2Br yielded dinuclear complex bearing a tetraphosphorus tBu2PPPPtBu2 ligand in the coordination sphere of the platinum. The molecular structures of the isolated products were established in the solid state and in solution by single-crystal X-ray diffraction and NMR spectroscopy. DFT studies indicated that the polyphosphorus ligands in the obtained complexes possess structures similar to free phosphenium cations tBu2P+═P-R (R = Me, I) or (tBu2P+═P)2.

12.
Dalton Trans ; 48(33): 12482-12495, 2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31361287

RESUMO

We present a series of amino- and aryl(diphosphino)boranes R2PB(R'')PR'2, where R2P, R'2P = tBu2P, tBuPhP, Ph2P, Cy2P, and R'' = iPr2N, Ph, which were obtained via the metathesis reaction of iPr2NBBr2 or PhBBr2 with selected lithium phosphides. The structures of isolated diphosphinoboranes were characterized in the solid state and in solution by means of X-ray diffraction and NMR spectroscopy, respectively. The utility of these P-B-P species as ligands for transition metal complexes was tested in the reaction with [(COD)PtMe2]. Moreover, we carried out DFT calculations to elucidate bonding interactions and philicity of the reactive centers as well as to analyze conformations of the studied species. Electronic and steric properties of substituents on P and B atoms were found to have a strong influence on the structures of the obtained compounds. Three main types of diphosphinoboranes were distinguished, based on the strength of P-B π-interaction within the molecule: (i) application of strong electron-donating substituents on P-atoms and electron-accepting phenyl groups on B atoms led to the structure with one double P[double bond, length as m-dash]B and one single P-B bond and diverse planar and pyramidal geometry of phosphanyl groups; (ii) reduction of the donor ability of phosphanyl groups gave diphosphanylboranes with delocalized P-B-P π-interactions; (iii) introduction of amino groups with strong donor abilities on B atoms canceled P-B π-interactions and allowed compounds with two very long P-B bonds and two pyramidal phosphanyl groups to be obtained.

13.
Inorg Chem ; 58(12): 7905-7914, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31125217

RESUMO

The reactivity of the phosphanylphosphinidene complex [(DippN)2W(Cl)(η2-P-P tBu2)]- (1) toward chalcogens (Ch = Se, S) was studied. Reactions of stoichiometric amounts of 1 with chalcogens in DME yielded monomeric tungsten complexes with phosphanylphosphinidene chalcogenide ligands of the formula tBu2P-P-Ch (Ch = Se (in 2) and S (in 5)), which can be regarded as products of the addition of a chalcogen atom to a P═W bond in starting complex 1. The dissolution of selenophosphinidene complex 2 in nondonor solvents led to the formation of a dinuclear complex of tungsten (3) bearing a tBu2P(Se)-P ligand together with [ tBuSe2Li(dme)2]2 and polyphosphorus species. Under the same reaction conditions, thiophosphinidene complex 5 dimerized via the formation of transient complex 7, possessing a thiotetraphosphane-diido moiety tBu2P(S)-P-P-P tBu2. The elimination of the tBu2PS group from 7 yielded stable dinuclear tungsten complex 8 with an unusual phosphinidene tBu2P-P-P ligand. The reaction of 1 with excess chalcogen led to the cleavage of the P-P bond in the tBu2P-P ligand and the formation of [(DippN)2W(PCh4)]22- and [ tBuCh2Li(dme)2]2. The isolated compounds were characterized by NMR spectroscopy and X-ray crystallography. Furthermore, the calculated geometries of the free selenophosphinidenes, tBu2P-P-Se and tBu2P(Se)-P, were compared with their geometries when serving as ligands in complexes 2 and 3.

14.
Chem Commun (Camb) ; 55(20): 2928-2931, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30775750

RESUMO

The first example of CO2 diphosphination is described. Reactions of unsymmetrical diphosphanes with CE2 (E = O, S) catalyzed by BPh3 insert a CE2 molecule into the P-P bond with formation of the products of the general formula R2P-E-C([double bond, length as m-dash]E)-PR2. The obtained CO2 adducts arise from synergistic interaction of diphosphane and borane with CO2 molecule.

15.
RSC Adv ; 9(48): 27749-27753, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-35530491

RESUMO

The monomeric diaminophosphinoboranes readily react with CO2 under mild conditions to cleanly form products of the general formula in the absence of a catalyst. The isolated products from the CO2-phosphinoboration were fully characterized by NMR spectroscopy, IR spectroscopy, and X-ray diffraction. The mechanism of CO2 phosphinoboration with diaminophosphinoboranes was elucidated by DFT calculations.

16.
Dalton Trans ; 47(47): 16885-16894, 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30444246

RESUMO

We present the comprehensive study of diphosphanes with diversified substituents regarding their syntheses, structures, and properties. To this end, we have synthesized a series of novel unsymmetrical alkyl, aryl and amino-substituted diphosphanes of the general formula R1R2P-PR3R4 (where R1, R2, R3, R4 = tBu, Ph, Et2N or iPr2N) via a salt metathesis reaction of halophosphanes with metal phosphides in high yield. We vastly expanded this group of compounds by obtaining the first mono- and tri-amino-substituted systems. The structures of the isolated compounds were characterized by NMR spectroscopy and X-ray diffraction. The isolated unsymmetrical diphosphanes have no tendency to rearrange to the corresponding symmetrical species. Additionally, we proposed the general classification of diphosphanes based on the number of different groups attached to phosphorus atoms and their distribution within a molecule. To investigate the impact of substituents on the properties of P-centers and a molecule as a whole, we conducted a DFT study on the electronic and steric properties of the obtained systems. The experimental and theoretical results can be very useful for designing P-P systems with desired properties.

17.
Inorg Chem ; 56(18): 11030-11042, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28841309

RESUMO

This work describes a series of iron(II) phosphanylphosphido complexes. These compounds were obtained by reacting lithiated diphosphanes R2PP(SiMe3)Li (R = t-Bu, i-Pr) with an iron(II) ß-diketiminate complex, [LFe(µ2-Cl)2Li(DME)2] (1), where DME = 1,2-dimethoxyethane and L = Dippnacnac (ß-diketiminate). While the reaction of 1 with t-Bu2PP(SiMe3)Li yields [LFe(η1-Me3SiPP-t-Bu2)] (2), that of 1 with equimolar amounts of i-Pr2PP(SiMe3)Li, in DME, leads to [LFe(η2-i-Pr2PPSiMe3)] (3). In contrast, the reaction of 1 with (i-Pr2N)2PP(SiMe3)Li provides not an iron-containing complex but 1-[(diisopropylamino)phosphine]-2,4-bis(diisopropylamino)-3-(trimethylsilyl)tetraphosphetane (4). The structures of 2-4 were determined using diffractometry. Thus, 2 exhibits a three-coordinate iron site and 3 a four-coordinate iron site. The increase in the coordination number is induced by the change from an anticlinal to a synclinal conformation of the phoshpanylphosphido ligands. The electronic structures of 2 and 3 were assessed through a combined field-dependent 57Fe Mössbauer and high-frequency and -field electron paramagnetic resonance spectroscopic investigation in conjunction with analysis of their magnetic susceptibility and magnetization data. These studies revealed two high-spin iron(II) sites with S = 2 ground states that have different properties. While 2 exhibits a zero-field splitting described by a positive D parameter (D = +17.4 cm-1; E/D = 0.11) for 3, this parameter is negative [D = -25(5) cm-1; E/D = 0.15(5)]. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations provide insights into the origin of these differences and allow us to rationalize the fine and hyperfine structure parameters of 2 and 3. Thus, for 2, the spin-orbit coupling mixes a z2-type ground state with two low-lying {xz/yz} orbital states. These interactions lead to an easy plane of magnetization, which is essentially parallel to the plane defined by the N-Fe-N atoms. For 3, we find a yz-type ground state that is strongly mixed with a low-lying z2-type orbital state. In this case, the spin-orbit interaction leads to a partial unquenching of the orbital momentum along the x axis, that is, to an easy axis of magnetization oriented roughly along the Fe-P bond of the phosphido moiety.

18.
Dalton Trans ; 45(12): 4961-4, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26857356

RESUMO

Reactions of [Cp*(OC)3M]Li (Cp* = C5Me5, M = Mo, W) towards t-Bu2P-PCl2 lead to the formation of phosphanylphosphinidene dimers [Cp*(OC)3M(η(2)-t-Bu2P-P)]2 in fairly good yields. The formation of a tetraphosphorus ligand proceeds via reductive dimerization of t-Bu2P-P units. NMR, X-ray investigations and DFT calculations show that the resulting tetraphosphorus ligand has a structure of dication t-Bu2P(+)=P-P=P(+)t-Bu2.

19.
Dalton Trans ; 45(5): 2172-9, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26556527

RESUMO

The nucleophilic properties of the title compound [(2,6-i-Pr2C6H3N)2(Cl)W(η(2)-t-Bu2P = P)]Li·3DME (1) were investigated in reactions with selected electrophilic reagents such as MeI, M(CO)5THF (M = Cr, Mo, W), AlCl3, and GaCl3. Methylation of 1 by MeI yields phosphanylphosphido complexes [(2,6-i-Pr2C6H3N)2W(X)(1,2-η-t-Bu2P = P-CH3)] (X = Cl, I) (2-Cl/2-I) with the formation of a new P-C bond. Moreover, 1 reacts with electrophilic compounds [(OC)5M·THF] (M = Cr, Mo, W) to yield a series of novel dinuclear phosphanylphosphinidene complexes [(2,6-i-Pr2C6H3N)2(Cl)W(1,2-η-t-Bu2P = P-M(CO)5)]Li·3DME (3, 4, 5) with very long P-M distances. Adducts [(2,6-i-Pr2C6H3N)2(Cl)W(1,2-η-t-Bu2P = P-MCl3)]Li·3DME (6, 7) formed by reaction of 1 with GaCl3 and AlCl3 are labile and dissociate into 1 and MCl3 (M = Ga, Al). The outcomes of reactions were monitored by (31)P-NMR spectroscopy. Furthermore, the structures of the isolated complexes 2-Cl/2-I, 3, 4, and [(2,6-i-Pr2C6H3N)2(Cl)W(1,2-η-t-Bu2P = P-W(t-Bu2PH)(CO)3COLi·2DME] (5-P) were confirmed unambiguously by X-ray diffraction studies.

20.
Inorg Chem ; 54(17): 8380-7, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26287312

RESUMO

The reactivity of an anionic phosphanylphosphinidene complex of tungsten(VI), [(2,6-i-Pr2C6H3N)2(Cl)W(η(2)-t-Bu2P═P)]Li·3DME toward PMe3, halogenophosphines, and iodine was investigated. Reaction of the starting complex with Me3P led to formation of a new neutral phosphanylphosphinidene complex, [(2,6-i-Pr2C6H3N)2(Me3P)W(η(2)-t-Bu2P═P)]. Reactions with halogenophosphines yielded new catena-phosphorus complexes. From reaction with Ph2PCl and Ph2PBr, a complex with an anionic triphosphorus ligand t-Bu2P-P((-))-PPh2 was isolated. The main product of reaction with PhPCl2 was a tungsten(VI) complex with a pentaphosphorus ligand, t-Bu2P-P((-))-P(Ph)-P((-))-P-t-Bu2. Iodine reacted with the starting complex as an electrophile under splitting of the P-P bond in the t-Bu2P═P unit to yield [(1,2-η-t-Bu2P-P-P-t-Bu2)W(2,6-i-Pr2C6H3N)2Cl], t-Bu2PI, and phosphorus polymers. The molecular structures of the isolated products in the solid state and in solution were established by single crystal X-ray diffraction and NMR spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA