Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 160(16)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38661193

RESUMO

Cyclopropylchloromethyldifluorosilane, c-C3H5SiF2CH2Cl, has been synthesized, and its rotational spectrum has been recorded by chirped-pulse Fourier transform microwave spectroscopy. The spectral analysis of several isotopologues indicates the presence of two distinct conformations in the free-jet expansion, which are interconvertible through a rotation of the chloromethyl group. A partial substitution structure is presented for the lower energy conformation and is compared to the equilibrium structure obtained from quantum chemical calculations. Additionally, the presence of the chlorine nucleus leads to the rotational transitions splitting into multiple hyperfine components and χaa, a measure of the electric field gradient along the a axis, is unusually small at merely +0.1393(73) MHz. Various common ab initio and density functional theory methods fail to predict good quadrupole coupling constants (in the principal axis system) that adequately reproduce the observed hyperfine splitting, although diagonalizing the quadrupole coupling tensor from the principal axis system into a nucleus-centered axis system reveals that, overall, these methods calculate reasonably the electric field gradient about the chlorine nucleus. Finally, a total of nine electric dipole forbidden, quadrupole allowed transitions are observed in the rotational spectra of the parent species of the higher energy conformation and the 37Cl isotopologue of the lower energy conformation. These include those of x-type (no change in parity of Ka or Kc), which, to our knowledge, is the first time such transitions have been observed in a chlorine-containing molecule.

2.
J Phys Chem A ; 128(1): 10-19, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38159057

RESUMO

Silacyclohex-2-ene and 1,1-difluorosilacyclohex-2-ene have been synthesized, and the chirped-pulse, Fourier-transform microwave spectra of each have been observed and analyzed from 4.9 to 23.1 GHz. Quantum chemical calculations have been performed at the B3LYP-D3BJ/Def2TZVP level of theory and predict µa to be the largest dipole moment component with a significantly larger value in this component for 1,1-difluorosilacyclohex-2-ene. In accordance with this prediction, the spectra were predominantly a-type with the observation of a few b- and c-type transitions. The signal-to-noise ratio was adequate in both spectra to observe 29Si, 30Si, and all singly substituted 13C isotopologues in natural abundance. All spectra have been fit to a semirigid rotational Hamiltonian and are presented. Analysis of the physical meaning of the fitted parameters is explored and determined to hold for the rotational constants while being more empirical for the centrifugal distortion terms. Experimental structures of both molecules indicate that the quantum chemically calculated structures for the atoms in the ring are a very close depiction of the experimentally determined structures. The structures of each molecule are compared to similar molecules for context, where it is shown that both molecules possess a similar "half-chair" conformation to that of the all-carbon analogue, cyclohexene.

3.
Phys Chem Chem Phys ; 24(4): 2454-2464, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35022647

RESUMO

The molecules 1,1-difluorosilacyclopent-3-ene (3SiCPF2) and silacyclopent-3-ene (3SiCP) have been synthesized and studied using chirped pulse, Fourier transform microwave (CP-FTMW) spectroscopy. For 3SiCP this is the first ever microwave study of the molecule and, for 3SiCPF2, the spectra reported in this work have been combined with that of previous work in a global fit. The spectra of each contain splitting which has been fit using a Hamiltonian consisting of semirigid and Coriolis coupling parameters. A refit of the original 3SiCPF2 work was also carried out. All fits and approaches are reported. Analyses of the spectra provide evidence that the molecule is planar which is in agreement with the high-level calculations, but the source of the splitting in the spectra has not been determined.

4.
J Phys Chem A ; 124(19): 3825-3835, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32323989

RESUMO

The rotational spectrum of 1,3,5-trisilapentane was observed on a chirped-pulse Fourier transform microwave spectrometer and is reported. During assignment, multiple conformations of the molecule were identified in the molecular beam. Prior quantum-chemical calculations performed on the molecule show that the identified spectra correspond to the lowest three calculated energetic structures. These structures are of C2 (Conf.1), C2v (Conf.2), and C1 (Conf.3) symmetry, with relative energy ordering of Conf.1 < Conf.3 < Conf.2, which is in stark contrast to n-pentane and all known silicon-substituted n-pentane derivatives. This is found to most likely arise from the elongation of the Si-C bond and the size of the silicon atoms providing for the C2 and C1 structures relieving steric hindrance in comparison to that of the C2v. In the C2v and C1 conformers, splitting in the spectra due to internal rotation of the -SiH3 end groups of 1,3,5-trisilapentane was observed and determined. The C2v equivalent V3 values are 368.46(33) cm-1, and the C1V3 values are 347.78(21) and 360.18(88) cm-1, respectively. These barriers are compared to similar species in order to help verify their veracity and are determined to be accurate based on similar molecular silyl rotors.

5.
J Phys Chem A ; 122(37): 7385-7390, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30160118

RESUMO

The microwave spectrum of the dimer Ar-1,3-difluorobenzene from 2 to 18 GHz is reported. The spectrum has been observed using a chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer that has recently been expanded to include the 2-6 GHz region of the electromagnetic spectrum. Details of this upgraded spectrometer are reported. Eighty-seven transitions were observed for the parent dimer spectrum, which was adequately fit to a semirigid rotational Hamiltonian consisting of A, B, and C as well as four quartic centrifugal distortion constants. Observations of 13C species in natural abundance were aided by utilizing smaller chirp ranges of 7-9 and 9-11 GHz for 1.9 million and 3.73 million averages, respectively. Assignment of 13C isotopologues allowed for determination of the Kraitchman coordinates of the carbon atoms as well as inertial fits of the complex. The quantum-chemical structure predicts an Ar to monomer center of mass distance of 3.48 Å, compared with 3.564(1) Å determined from experimental structural analysis. This new study indicates that in fluorinated benzene-Ar dimers, when the fluorines are separated by more carbon atoms, the Ar-ring center distance decreases.

6.
J Chem Phys ; 146(20): 204302, 2017 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-28571327

RESUMO

The pure rotational transitions of H2-AuCl have been measured using a pulsed-jet cavity Fourier transform microwave spectrometer equipped with a laser ablation source. The structure was found to be T-shaped, with the H-H bond interacting with the gold atom. Both 35Cl and 37Cl isotopologues have been measured for both ortho and para states of H2. Rotational constants, quartic centrifugal distortion constants, and nuclear quadrupole coupling constants for gold and chlorine have been determined. The use of the nuclear spin-nuclear spin interaction terms Daa, Dbb, and Dcc for H2 were required to fit the ortho state of hydrogen, as well as a nuclear-spin rotation constant Caa. The values of the nuclear quadrupole coupling constant of gold are χaa=-817.9929(35) MHz, χbb=504.0(27) MHz, and χcc=314.0(27). This is large compared to the eQq of AuCl, 9.63 312(13) MHz, which indicates a strong, covalent interaction between gold and dihydrogen.

7.
J Phys Chem A ; 119(42): 10475-80, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26421936

RESUMO

This work reports the first known spectroscopic observation of the monohydrate and dihydrate complexes of perfluoropropionic acid (PFPA). The spectra have been observed using a chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer in the 7750 to 14,250 MHz region. The structures of the species have been confirmed with the aid of ab initio quantum chemical calculations. Rotational constants A, B, and C have been determined and reported for both species along with centrifugal distortion constants ΔJ, ΔJK, ΔK, δJ, δK for H2O-PFPA and ΔJ, ΔJK, and δJ for (H2O)2-PFPA. Effects due to large amplitude motions were not observable in these experiments. Structures of the complexes have been determined using a combination of experimental second moment values and ab initio results. The complexation of the -OH of one or two water molecules has been found to occur in the plane of the carboxylic acid group forming a six- or eight-member ring.

9.
J Chem Phys ; 141(11): 114306, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25240357

RESUMO

H2-AgCl has been observed on a Fourier transform microwave spectrometer equipped with laser ablation source and determined to be a dihydrogen complex. Transitions up to J = 3-2 have been measured and analyzed for four isotopologues of the complex containing ortho and para H2. The ortho and para spin states have been included in one fit, a deviation from the typical H2 complex. Rotational constants B and C, centrifugal distortion constants Δ(J) and Δ(JK), nuclear electric quadrupole coupling constants χ(aa), χ(bb), and χ(cc) for (35)Cl and (37)Cl have been fit for both spin states while nuclear spin-nuclear spin constants D(aa), D(bb), and D(cc), and nuclear spin-rotation constant C(aa) have been reported for the ortho spin state. Quantum chemical calculations predict a strong bonding interaction and the strength of the complex has been related to reported χ(aa) and Δ(J) values amongst a host of comparable species, including the AgCl monomer itself. Bond lengths have been determined for Ag-Cl, Ag-H2 center-of-mass, and H-H and are reported.

10.
J Chem Phys ; 140(11): 114303, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24655176

RESUMO

A new intermolecular potential energy surface, rovibrational transition frequencies, and line strengths are computed for CO2-CS2. The potential is made by fitting energies obtained from explicitly correlated coupled-cluster calculations using an interpolating moving least squares method. The rovibrational Schrödinger equation is solved with a symmetry-adapted Lanczos algorithm and an uncoupled product basis set. All four intermolecular coordinates are included in the calculation. In agreement with previous experiments, the global minimum of the potential energy surface (PES) is cross shaped. The PES also has slipped-parallel minima. Rovibrational wavefunctions are localized in the cross minima and the slipped-parallel minima. Vibrational parent analysis was used to assign vibrational labels to rovibrational states. Tunneling occurs between the two cross minima. Because more than one symmetry operation interconverts the two wells, the symmetry (-oo) of the upper component of the tunneling doublet is different from the symmetry (-ee) of the tunneling coordinate. This unusual situation is due to the multidimensional nature of the double well tunneling. For the cross ground vibrational state, calculated rotational constants differ from their experimental counterparts by less than 0.0001 cm(-1). Most rovibrational states were found to be incompatible with the standard effective rotational Hamiltonian often used to fit spectra. This appears to be due to coupling between internal and overall rotation of the dimer. A simple 2D model accounting for internal rotation was used for two cross-shaped fundamentals to obtain good fits.

11.
Inorg Chem ; 52(2): 816-22, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23301994

RESUMO

This work details a gas phase study of the bonding of hydrogen to the metal in a simple diatomic analogue of a metal organic framework (MOF), copper fluoride, via dihydrogen complexation. This is the first microwave study of these types of interactions. J = 1-0 transitions of para-H(2)-CuF, ortho-D(2)-CuF, and HD-CuF have been measured and analyzed. The complexes were prepared by laser ablating a metal copper rod in the presence of a gas mix of 0.6% SF(6) and 3% H(2) in Ar undergoing supersonic expansion. The binding energy of this complex is addressed through quantum chemical calculations and measured nuclear quadrupole coupling constants for copper and deuterium. The significant change in the calculated binding energy and nuclear quadrupole coupling constants in relation to similar molecules suggest bonding greater than that typical of van der Waals interactions.

12.
J Phys Chem A ; 116(31): 8169-75, 2012 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-22799501

RESUMO

Rotational spectra for hexafluoroisobutene, and its (13)C isotopologues, have been recorded between 8 and 16 GHz using a chirped pulse, Fourier transform microwave spectrometer. Notably, all spectra observed are doubled with separations between the doublets being between 1 and 60 MHz. We propose that the bis-trifluoromethyl groups of the target molecule are staggered in the equilibrium configuration, and that a novel, out-of-phase rotation through a F-CCC-F planar configuration with low barrier (<100 cm(-1)), leads to the observed doubled rotational spectra.

13.
J Phys Chem A ; 115(6): 1086-91, 2011 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-21247208

RESUMO

The hydrofluoroether C(4)F(9)OCH(3) (methoxynonafluorobutane, HFE-7100) has been studied by chirped pulse Fourier transform microwave spectroscopy as vapor from the liquid participates in a supersonic expansion of argon. Two isomers are present, (CF(3))(2)CFCF(2)OCH(3) and n-C(4)F(9)OCH(3), and in each case the rotational spectra of only one, dominating, conformer has been assigned. Rotational constants, centrifugal distortion constants, and barriers to methyl group internal rotation for the observed species have been experimentally determined for the first time. We note that Ray's asymmetry parameter for the (CF(3))(2)CFCF(2)OCH(3) isomer is 0.007 083(1), indicating almost "perfect" asymmetry. Also, electronic structure calculations show an extremely short C(frame)-O ether bond length of 1.337 Å.

14.
J Phys Chem A ; 114(30): 8009-15, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20666547

RESUMO

Propionyl chloride and perfluoropropionyl chloride have been characterized using chirped pulse Fourier transform microwave spectroscopy between the frequency range of 8 and 14 GHz. Molecules were studied in separate experiments in supersonic expansions of argon. The (35)Cl, (37)Cl, and each of the monoisotopic (13)C substituted isotopologues of propionyl chloride were observed. The (35)Cl and (37)Cl isotopologues of perfluoropropionyl chloride were observed. Analyses of the resulting microwave spectra have yielded spectroscopic constants for the target molecules. The analyses indicate that, under the conditions of these experiments, both molecules are only detectable as cis conformers in which angleCCCO = 0 degrees . Comparisons are made between the electronic and geometric structure of propionyl chloride and perfluoropropionyl chloride, and also other acyl chlorides. The data produced are relevant in regards to quantifying the known destabilizing effect of perfluoroalky chains on carbonyl groups. Distinct differences in electronegativity between the CH(3)CH(2)CO- and CF(3)CF(2)CO- groups are discussed. Methyl group internal rotation is observed for propionyl chloride and has been analyzed to produce a V(3) barrier height.

15.
J Chem Phys ; 132(2): 024310, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20095677

RESUMO

Molecular pulsed jet, chirped-pulse Fourier transform microwave spectroscopy has been used to record 499 transitions for the title molecule. Measurements have been made in the 8-16 GHz regions. Vibrational and electronic ground state rotational constants A, B, and C have been obtained, together with centrifugal distortion terms. The complete iodine and nitrogen nuclear quadrupole coupling tensors have been determined for the first time. Quantum chemical calculations have been performed to aid with analyses and, in particular, to aid in determining the signs of the off-diagonal components of the nuclear quadrupole coupling tensors. An experimentally determined relative electronegativity scale for several polyhalomethyl groups is proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA