Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34210005

RESUMO

So far, copper has been difficult to process via laser powder bed fusion due to low absorption with the frequently used laser systems in the infrared wavelength range. However, green laser systems have emerged recently and offer new opportunities in processing highly reflective materials like pure copper through higher absorptivity. In this study, pure copper powders from two suppliers were tested using the same machine parameter sets to investigate the influence of the powder properties on the material properties such as density, microstructure, and electrical conductivity. Samples of different wall thicknesses were investigated with the eddy-current method to analyze the influence of the sample thickness and surface quality on the measured electrical conductivity. The mechanical properties in three building directions were investigated and the geometrical accuracy of selected geometrical features was analyzed using a benchmark geometry. It could be shown that the generated parts have a relative density of above 99.95% and an electrical conductivity as high as 100% International Annealed Copper Standard (IACS) for both powders could be achieved. Furthermore, the negative influence of a rough surface on the measured eddy-current method was confirmed.

2.
Materials (Basel) ; 12(15)2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31366036

RESUMO

Recently, additive manufacturing (AM) by laser metal deposition (LMD) has become a key technology for fabricating highly complex parts without any support structures. Compared to the well-known powder bed fusion process, LMD enhances manufacturing possibilities to overcome AM-specific challenges such as process inherent porosity, minor build rates, and limited part size. Moreover, the advantages aforementioned combined with conventional machining enable novel manufacturing approaches in various fields of applications. Within this contribution, the additive manufacturing of filigree flexure pivots using 316L-Si by means of LMD with powder is presented. Frictionless flexure pivot bearings are used in space mechanisms that require high reliability, accuracy, and technical cleanliness. As a contribution to part qualification, the manufacturing process, powder material, and fabricated specimens were investigated in a comprehensive manner. Due to its major impact on the process, the chemical powder composition was characterized in detail by energy dispersive X-ray spectroscopy (EDX) and inductively coupled plasma optical emission spectrometry (ICP-OES). Moreover, a profound characterization of the powder morphology and flowability was carried out using scanning electron microscopy (SEM) and novel rheological investigation techniques. Furthermore, quantitative image analysis, mechanical testing, laser scanning microscopy, and 3D shape measurement of manufactured specimens were conducted. As a result, the gained knowledge was applied for the AM-specific redesign of the flexure pivot. Finally, a qualified flexure pivot has been manufactured in a hybrid manner to subsequently ensure its long-term durability in a lifetime test bench.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA