Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
ACS Appl Mater Interfaces ; 16(25): 31997-32016, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38869318

RESUMO

Personalized medicine is a new approach to modern oncology. Here, to facilitate the application of extracellular vesicles (EVs) derived from lung cancer cells as potent advanced therapy medicinal products in lung cancer, the EV membrane was functionalized with a specific ligand for targeting purposes. In this role, the most effective heptapeptide in binding to lung cancer cells (PTHTRWA) was used. The functionalization process of EV surface was performed through the C- or N-terminal end of the heptapeptide. To prove the activity of the EVs functionalized with PTHTRWA, both a model of lipid membrane mimicking normal and cancerous cell membranes as well as human adenocarcinomic alveolar basal epithelial cells (A549) and human normal bronchial epithelial cells (BEAS-2B) have been exposed to these bioconstructs. Magnetic resonance imaging (MRI) showed that the as-bioengineered PTHTRWA-EVs loaded with superparamagnetic iron oxide nanoparticle (SPIO) cargos reach the growing tumor when dosed intravenously in NUDE Balb/c mice bearing A549 cancer. Molecular dynamics (MD) in silico studies elucidated a high affinity of the synthesized peptide to the α5ß1 integrin. Preclinical safety assays did not evidence any cytotoxic or genotoxic effects of the PTHTRWA-bioengineered EVs.


Assuntos
Vesículas Extracelulares , Neoplasias Pulmonares , Camundongos Endogâmicos BALB C , Camundongos Nus , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Animais , Camundongos , Células A549 , Nanopartículas Magnéticas de Óxido de Ferro/química
2.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928240

RESUMO

Extracellular vesicles (EVs) hold great promise for clinical application as new diagnostic and therapeutic modalities. This paper describes major GMP-based upstream and downstream manufacturing processes for EV large-scale production, also focusing on post-processing technologies such as surface bioengineering and uploading studies to yield novel EV-based diagnostics and advanced therapy medicinal products. This paper also focuses on the quality, safety, and efficacy issues of the bioengineered EV drug candidates before first-in-human studies. Because clinical trials involving extracellular vesicles are on the global rise, this paper encompasses different clinical studies registered on clinical-trial register platforms, with varying levels of advancement, highlighting the growing interest in EV-related clinical programs. Navigating the regulatory affairs of EVs poses real challenges, and obtaining marketing authorization for EV-based medicines remains complex due to the lack of specific regulatory guidelines for such novel products. This paper discusses the state-of-the-art regulatory knowledge to date on EV-based diagnostics and medicinal products, highlighting further research and global regulatory needs for the safe and reliable implementation of bioengineered EVs as diagnostic and therapeutic tools in clinical settings. Post-marketing pharmacovigilance for EV-based medicinal products is also presented, mainly addressing such topics as risk assessment and risk management.


Assuntos
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Humanos , Animais
3.
Toxicol In Vitro ; 99: 105850, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38801838

RESUMO

Cytotoxic and genotoxic effects of novel mPEG-silane coated iron(III) oxide nanoparticles doped with magnesium (Mg0.1-γ-Fe2O3(mPEG-silane)0.5) have been investigated on human adenocarcinomic alveolar basal epithelial (A549) and human normal bronchial epithelial (BEAS-2B) cells. In the studies several molecular and cellular targets addressing to cell membrane, cytoplasm organelles and nucleus components were served as toxicological endpoints. The as-synthesized nanoparticles were found to be stable in the cell culture media and were examined for different concentration and exposure times. No cytotoxicity of the tested nanoparticles was found although these nanoparticles slightly increased reactive oxygen species in both cell types studied. Mg0.1-γ-Fe2O3(mPEG-silane)0.5 nanoparticles did not produce any DNA strand breaks and oxidative DNA damages in A549 and BEAS-2B cells. Different concentration of Mg0.1-γ-Fe2O3(mPEG-silane)0.5 nanoparticles and different incubation time did not affect cell migration. The lung cancer cells' uptake of the nanoparticles was more effective than in normal lung cells. Altogether, the results evidence that mPEG-silane coated iron(III) oxide nanoparticles doped with magnesium do not elucidate any deleterious effects on human normal and cancerous lung cells despite cellular uptake of these nanoparticles. Therefore, it seems reasonable to conclude that these novel biocompatible nanoparticles are promising candidates for further development towards medical applications.

4.
Life (Basel) ; 14(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38541732

RESUMO

Extracellular vesicles (EVs) released from primary cell lines, originating from resected tissues during biopsies in patients with non-small cell lung cancer (NSCLC) revealing adenocarcinoma and squamous cell carcinoma subtypes, were examined for membrane proteomic fingerprints using a proximity barcoding assay. All the collected EVs expressed canonical tetraspanins (CD9, CD63, and CD81) highly coexpressed with molecules such as lysosome-associated membrane protein-1 (LAMP1-CD107a), sialomucin core protein 24 (CD164), Raph blood group (CD151), and integrins (ITGB1 and ITGA2). This representation of the protein molecules on the EV surface may provide valuable information on NSCLC subtypes and offer new diagnostic opportunities as next-generation biomarkers in personalized oncology.

5.
Toxicol In Vitro ; 95: 105760, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38070718

RESUMO

The cytotoxic effects of water-based ferrofluids composed of iron oxide nanoparticles, including magnetite (Fe3O4) and maghemite (γ-Fe2O3), ranging from 15 to 100 nm, were examined on various lung cancer cells including adenocarcinomic human alveolar basal epithelial cells (A549), nonsmall lung squamous cell carcinoma (H1703), small cell lung cancer cells (DMS 114), and normal bronchial epithelial cells (BEAS-2B). The cytotoxic effect was evaluated both with and without exposure to an alternating magnetic field (AMF). The studies revealed that neither AMF nor iron oxide nanoparticles when tested individually, produced cytotoxic effects on either cancerous or noncancerous cells. However, when applied together, they led to a significant decrease in cell viability and proliferative capacity due to the enhanced effects of magnetic fluid hyperthermia (MFH). The most pronounced effects were found for maghemite (<50 nm) when subjected to an AMF. Notably, A549 cells exhibited the highest resistance to the proposed hyperthermia treatment. BEAS-2B cells demonstrated susceptibility to magnetized iron oxide nanoparticles, similar to the response observed in lung cancer cells. The studies provide evidence that MFH is a promising strategy as a standalone treatment for different types of lung cancer cells. Nevertheless, to prevent any MFH-triggered adverse effects on normal lung cells, targeted magnetic ferrofluids should be designed.


Assuntos
Antineoplásicos , Compostos Férricos , Neoplasias Pulmonares , Nanopartículas de Magnetita , Humanos , Antineoplásicos/farmacologia , Campos Magnéticos , Pulmão , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas de Magnetita/toxicidade , Linhagem Celular Tumoral
6.
Nanomedicine ; 55: 102721, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007065

RESUMO

Integrin beta-3 is a cell adhesion molecule that mediate cell-to-cell and cell-to-extracellular matrix communication. The major goal of this study was to explore melanoma cells (B16F10) based upon specific direct targeting of the ß3 subunit (CD61) in the integrin αvß3 receptor using carbon-encapsulated iron nanoparticles decorated with monoclonal antibodies (Fe@C-CONH-anti-CD61 and Fe@C-(CH2)2-CONH-anti-CD61). Both melanoma cells treated with nanoparticles as well as C57BL/6 mice bearing syngeneic B16-F10 tumors intravenously injected with nanoparticles were tested in preclinical MRI studies. The as-synthesized carbon-encapsulated iron nanoparticles functionalized with CD61 monoclonal antibodies have been successfully used as a novel targeted contrast agent for MRI-based tracking melanoma cells expressing the ß3 subunit of the integrin αvß3 receptor.


Assuntos
Antineoplásicos , Melanoma , Nanopartículas , Animais , Camundongos , Melanoma/diagnóstico por imagem , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Integrina alfaVbeta3/metabolismo , Anticorpos Monoclonais/farmacologia , Ferro/farmacologia , Camundongos Endogâmicos C57BL , Imageamento por Ressonância Magnética , Adesão Celular , Antineoplásicos/farmacologia , Carbono/uso terapêutico
7.
Dalton Trans ; 53(1): 56-64, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38078478

RESUMO

An effective synthetic protocol towards the oxidation of sumanene-ferrocene conjugates bearing one to four ferrocene moieties has been established. The oxidation protocol was based on the transformation of FeII from ferrocene to FeIII-containing ferrocenium cations by means of the treatment of the title organometallic buckybowls with a mild oxidant. Successful isolation of these ferrocenium-tethered sumanene derivatives 5-7 gave rise to the biological evaluation of the first, buckybowl-based anticancer agents, as elucidated by in vitro assays with human breast adenocarcinoma cells (MDA-MB-231) and embryotoxicity trials in zebrafish embryos supported with in silico toxicology studies. The designed ferrocenium-tethered sumanene derivatives featured attractive properties in terms of their use in cancer treatments in humans. The tetra-ferrocenium sumanene derivative 7 featured especially beneficial biological features, elucidated by low (<40% for 10 µM) viabilities of MDA-MB-231 cancer cells together with a 1.4-1.7-fold higher viability of normal cells (human mammary fibroblasts, HMF) for respective concentrations. Compound 7 featured significant cytotoxicity against cancer cells thanks to the presence of sumanene and ferrocenium moieties; the latter motif also provided the selectivity of anticancer action. The biological properties of 7 were also improved in comparison with those of native building blocks, which suggested the effects of the presence of the sumanene skeleton towards the anticancer action of this molecule. Ferrocenium-tethered sumanene derivatives exhibited potential towards the generation of reactive oxygen species (ROS), responsible for biological damage to the cancer cells, with the most efficient generation of the tetra-ferrocenium sumanene derivative 7. Derivative 7 also did not show any embryotoxicity in zebrafish embryos at the tested concentrations, which supports its potential as an effective and cancer-specific anticancer agent. In silico computational analysis also showed no chromosomal aberrations and no mutation with AMES tests for the compound 7 tested with and without microsomal rat liver fractions, which supports its further use as a potent drug candidate in detailed anticancer studies.


Assuntos
Antineoplásicos , Peixe-Zebra , Humanos , Animais , Metalocenos/farmacologia , Compostos Férricos , Compostos Ferrosos/farmacologia , Antineoplásicos/farmacologia
8.
Molecules ; 28(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446932

RESUMO

BRAF inhibitors have improved the treatment of advanced or metastatic melanoma in patients that harbor a BRAFT1799A mutation. Because of new insights into the role of aberrant glycosylation in drug resistance, we designed and studied three novel vemurafenib derivatives possessing pentose-associated aliphatic ligands-methyl-, ethyl-, and isopropyl-ketopentose moieties-as potent BRAFV600E kinase inhibitors. The geometries of these derivatives were optimized using the density functional theory method. Molecular dynamic simulations were performed to find interactions between the ligands and BRAFV600E kinase. Virtual screening was performed to assess the fate of derivatives and their systemic toxicity, genotoxicity, and carcinogenicity. The computational mapping of the studied ligand-BRAFV600E complexes indicated that the central pyrrole and pyridine rings of derivatives were located within the hydrophobic ATP-binding site of the BRAFV600E protein kinase, while the pentose ring and alkyl chains were mainly included in hydrogen bonding interactions. The isopropyl-ketopentose derivative was found to bind the BRAFV600E oncoprotein with more favorable energy interaction than vemurafenib. ADME-TOX in silico studies showed that the derivatives possessed some desirable pharmacokinetic and toxicologic properties. The present results open a new avenue to study the carbohydrate derivatives of vemurafenib as potent BRAFV600E kinase inhibitors to treat melanoma.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Humanos , Vemurafenib/farmacologia , Ligantes , Sulfonamidas/farmacologia , Indóis/farmacologia , Indóis/uso terapêutico , Melanoma/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral
9.
Anal Chem ; 95(25): 9520-9530, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37307147

RESUMO

Tetraspanins, including CD9, CD63, and CD81, are transmembrane biomarkers that play a crucial role in regulating cancer cell proliferation, invasion, and metastasis, as well as plasma membrane dynamics and protein trafficking. In this study, we developed simple, fast, and sensitive immunosensors to determine the concentration of extracellular vesicles (EVs) isolated from human lung cancer cells using tetraspanins as biomarkers. We employed surface plasmon resonance (SPR) and quartz crystal microbalance with dissipation (QCM-D) as detectors. The monoclonal antibodies targeting CD9, CD63, and CD81 were oriented vertically in the receptor layer using either a protein A sensor chip (SPR) or a cysteamine layer that modified the gold crystal (QCM-D) without the use of amplifiers. The SPR studies demonstrated that the interaction of EVs with antibodies could be described by the two-state reaction model. Furthermore, the EVs' affinity to monoclonal antibodies against tetraspanins decreased in the following order: CD9, CD63, and CD81, as confirmed by the QCM-D studies. The results indicated that the developed immunosensors were characterized by high stability, a wide analytical range from 6.1 × 104 particles·mL-1 to 6.1 × 107 particles·mL-1, and a low detection limit (0.6-1.8) × 104 particles·mL-1. A very good agreement between the results obtained using the SPR and QCM-D detectors and nanoparticle tracking analysis demonstrated that the developed immunosensors could be successfully applied to clinical samples.


Assuntos
Técnicas Biossensoriais , Vesículas Extracelulares , Neoplasias Pulmonares , Humanos , Ressonância de Plasmônio de Superfície/métodos , Técnicas Biossensoriais/métodos , Técnicas de Microbalança de Cristal de Quartzo , Imunoensaio , Tetraspaninas , Vesículas Extracelulares/química , Biomarcadores , Tetraspanina 28 , Tetraspanina 30/análise , Tetraspanina 29/análise
10.
J Mater Chem B ; 11(18): 4028-4041, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-36960952

RESUMO

Magnetic fluid hyperthermia (MFH) is a promising therapeutic strategy that targets malignant tissues by heating to 40-43 °C using magnetic nanoparticles (MNPs) subjected to an alternating magnetic field (AMF). In this study, novel magnetic iron(III) oxide nanoparticles doped with magnesium (Mg0.1-γ-Fe2O3(mPEG-silane)0.5) were synthesized, and their structural, chemical, and magnetic properties were analyzed using the following techniques: Fourier-transform infrared spectroscopy, Raman spectroscopy, vibrating magnetometer analysis, powder X-ray diffraction, inductively coupled plasma mass spectrometry, scanning electron microscopy, high-resolution transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The as-synthesized MNPs were used as water ferrofluids for MFH under an AMF in two calorimetric setups, namely phantom and lung cancer cell (A549) models. The as-synthesized MNPs were hexagonal or rhombohedral shaped, with an average size of 27 nm. They showed a typical soft ferromagnetic behavior based on the hysteresis profile, with a magnetic saturation of 70 emu g-1 and remnant magnetization of 1.6 emu g-1. In phantom studies, the ferrofluid (3.0 mg mL-1) exposed to an AMF (18.3 kA m-1, 110.1 kHz) heated up extremely quickly, reaching more than 90 °C in the first 10 min of magnetization. In cell studies, the ferrofluid (0.25 mg mL-1) under an AMF (16.7 kA m-1, 110.1 kHz) showed a slight increase in temperature within the first 12 min, reaching a peak of ca. 43-45 °C, which was stable up to the end of the AMF exposure (45 min). Under these conditions, a pronounced cytotoxic effect on the lung cancer cells was observed (viability ca. 15-20%). No such deleterious effects were observed when the cells were treated with MNPs only without an AMF. Specific absorption rate (SAR) measurements were performed using three mathematical approaches, namely the initial slope method, the corrected slope method, and the Box-Lucas method, which ranged from ca. 429 to 596 W g-1 for phantom and cell studies. Iron(III) oxide MNPs doped with magnesium were found to be candidates for MFH in lung cancer treatments.


Assuntos
Hipertermia Induzida , Neoplasias Pulmonares , Nanopartículas de Magnetita , Humanos , Magnésio , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas de Magnetita/química , Hipertermia Induzida/métodos , Ferro , Óxidos , Neoplasias Pulmonares/terapia , Hipertermia , Campos Magnéticos
11.
Biochem Biophys Res Commun ; 652: 84-87, 2023 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-36841098

RESUMO

The rapid progress of nanotechnology has led to use different nanomaterials for biomedical applications. Among them, graphene-encapsulated magnetic nanoparticles (GEMNS) are recognized as next generation carbon nanomaterials in translation cancer research. In this study, we utilized green fluorescence protein (GFP) expression plasmid DNA (pDNA) and GEMNS decorated with branched polyethyleneimine (PEI) to yield a novel transporter (GEMNS-PEI/pDNA) for gene delivery into melanoma cells (B16F10). The efficiency of transfection was examined using PCR and confocal microscopy. The studies show that the as-designed GEMNS-PEI construct is successfully used to transfect the melanoma cells with pDNA and it should be considered as a potent non-viral vector for introducing naked nucleic acids into eucaryotic cells.


Assuntos
Grafite , Melanoma , Nanopartículas , Humanos , Ferro , Técnicas de Transferência de Genes , Transfecção , Plasmídeos , DNA/metabolismo , Polietilenoimina
12.
Eur J Pharm Sci ; 181: 106369, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36572357

RESUMO

Recent advances in nanomedicine have paved the way for developing targeted drug delivery systems. Nanoscale exosomes are present in almost every body fluid and represent a novel mechanism of intercellular communication. Because of their membrane origin, they easily fuse with cells, acting as a natural delivery system and maintaining the bioactivity and immunotolerance of cells. To develop a reconstitutable exosome-based drug candidate for clinical applications, quality assurance by preserving its physical and biological properties during storage is necessary. Therefore, this study aimed to determine the best storage conditions for exosomes derived from lung cancer cells (A549). This study established that the phosphate-buffered saline buffer enriched with 25 mM trehalose is an optimal cryoprotectant for A549-derived exosomes stored at -80°C. Under these conditions, the concentration, size distribution, zeta potential, and total cargo protein levels of the preserved exosomes remained constant.


Assuntos
Exossomos , Neoplasias Pulmonares , Humanos , Exossomos/metabolismo , Sistemas de Liberação de Medicamentos , Neoplasias Pulmonares/metabolismo , Crioprotetores , Trealose
13.
Sens Actuators B Chem ; 371: 132539, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36033923

RESUMO

In every pandemic, it is critical to test as many people as possible and keep track of the number of new cases of infection. Therefore, there is a need for novel, fast and unambiguous testing methods. In this study, we designed a sandwich-type voltammetric immunosensor based on unlabeled- and labeled with a redox probe antibodies against virus spike protein for fast and ultrasensitive detection of SARS-CoV-2. The process of the preparation of the sensor layer included chemisorption of cysteamine layer and covalent anchoring of antibody specific for the S1 subunit of the S protein. The source of the voltametric signal was the antibody labeled with the redox probe, which was introduced onto biosensor surface only after the recognition of the virus. This easy-to-handle immunosensor was characterized by a wide analytical range (2.0·10-7 to 0.20 mg·L-1) and low detection limit (8.0·10-8 mg·L-1 ≡ 0.08 pg·mL-1 ≡ 4 virions·µL-1). The utility of the designed device was also evidenced by the detection of SARS-CoV-2 in the clinical samples. Moreover, the main advantage and a huge novelty of the developed device, compared to those already existing, is the moment of generating the analytical signal of the redox probe that appears only after the virus recognition. Thus, our diagnostic innovation may considerably contribute to controlling the COVID-19 pandemic. The as-developed immunosensor may well offer a novel alternative approach for viral detection that could complement or even replace the existing methods.

14.
Chem Phys Lipids ; 244: 105192, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35259337

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is considered to be the leading cause of liver pathologies worldwide. Accurate diagnosis and staging of NAFLD is of utmost prognostic importance. Herein, we propose the application of multiparametric MRI in whole-body fat imaging that may serve in obesity and NAFLD diagnosis as we established based on an experimental preclinical model of high-calorie diet-induced NAFLD rats. METHODS AND RESULTS: Sprague Dawley male rats randomly divided into control and high-fat diet (HFD) groups to develop NAFLD were used in the experiments. After 12 weeks of the feeding the animals were subjected to MRI modalities based on the Dixon mode and DWI following T2-weighted imaging. Moreover, serum TAG, liver histopathological examination and liver fatty acids analysis (GC-MS) were also performed. The qualitative analysis of DWI images revelated the decrease of signals in the liver of rats subjected to HFD. The statistical analysis of signals from the water- and fat-separated voxels on Dixon images also showed the increase of the fat tissue along with the decrease of water molecules in the liver parenchyma of obese animals. The quantitative analysis of Dixon images allowed to estimate the statistically significant changes of whole-body fat profiles in both normal and obese rats. Histological analysis of the liver tissues, serum TAG and fatty acids profile in the livers confirmed the changes in the fat profile as demonstrated in MRI studies. CONCLUSIONS: The MRI-based modalities such as DWI and Dixon method provide both qualitative and quantitative data on the whole-body fat distribution and adipose tissues in the liver parenchyma of obese rats. The results show that MRI is a promising and reliable method and has potential to be used as a non-invasive translational biomarker in NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica , Ácidos Graxos , Fígado/diagnóstico por imagem , Fígado/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/diagnóstico por imagem , Obesidade/patologia , Ratos , Ratos Sprague-Dawley , Água
15.
Anal Chim Acta ; 1191: 339290, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35033237

RESUMO

In this study, we developed novel, simple gravimetric and voltammetric sensors for the ultrasensitive detection of active matrix metalloproteinase (MMP)-2 in plasma. The developed sensors are cost-effective, require a very less amount of reagents, and are time-saving. They detect MMP-2 based on antigen-antibody recognition and its ability to cleave glycine-leucine peptide bond. The three-dimensional bioplatform of the sensors consisted of a cationic polyethyleneimine (PEI) polymer that facilitated robust immobilization of the dipeptide labeled with anthraquinone (AQ), or antibody molecules in appropriate density, which was crucial for biosensing. Detection was performed using quartz crystal microbalance with dissipation and voltammetry. The results showed that the developed sensors were characterized by high stability, wide analytical range (2.0 pg mL-1 to 5.0 µg mL-1), and low detection limit (ca. 10 fg mL-1). They also exhibited excellent efficiency in the determination of active MMP-2 in real samples, such as blood plasma. The developed sensors may hold great promise for the early diagnosis of cancers.


Assuntos
Técnicas Biossensoriais , Metaloproteinase 2 da Matriz , Biomarcadores Tumorais , Técnicas Eletroquímicas , Imunoensaio , Limite de Detecção , Plasma , Técnicas de Microbalança de Cristal de Quartzo
16.
Biosens Bioelectron ; 195: 113653, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34563889

RESUMO

Studies over the last decade have shown that matrix metalloproteinases (MMPs) play a key role in the growth and metastasis of cancer. This zinc-dependent family of endopeptidases is crucial for the degradation of extracellular matrix (ECM), as well as serves as important ECM transducers which have been recognized as early biomarkers for both cancer diagnosis and treatment. In this study, we designed a new type of voltammetric biosensor, composed of a glycine-methionine dipeptide conjugated covalently to ferrocene (Gly-Met-Fc), for fast and ultrasensitive detection of the active form of MMP-9 in plasma samples. The detection was based on specific enzymatic cleavage of the Gly-Met peptide bond, which was monitored by voltammetry and gravimetry measurements. The ferrocene units act as voltammetric visualizers for the detection process. The cysteamine layer directly anchored to the gold surface ensured that the packing density of Gly-Met-Fc in the receptor layer was appropriate for the sensitive detection of MMP-9 in its active form. The developed biosensor was characterized by the widest analytical range (2.0·10-6 - 5.0 µg⋅mL-1) and low detection limit (0.04 pg⋅mL-1). Another valuable feature of the proposed biosensor is that it can be applied directly to the plasma samples without any additional preparation step and thus speeds up the analysis.


Assuntos
Técnicas Biossensoriais , Neoplasias , Biomarcadores Tumorais , Dipeptídeos , Humanos , Metaloproteinase 9 da Matriz , Metalocenos , Prognóstico
17.
Int J Mol Sci ; 22(1)2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33406789

RESUMO

Nearly half of patients with advanced and metastatic melanomas harbor a BRAF mutation. Vemurafenib (VEM), a BRAF inhibitor, is used to treat such patients, however, responses to VEM are very short-lived due to intrinsic, adaptive and/or acquired resistance. In this context, we present the action of the B-Raf serine-threonine protein kinase inhibitor (vemurafenib) on the glycans structure and metallomics profiles in melanoma cells without (MeWo) and with (G-361) BRAF mutations. The studies were performed using α1-acid glycoprotein (AGP), a well-known acute-phase protein, and concanavalin A (Con A), which served as the model receptor. The detection of changes in the structure of glycans can be successfully carried out based on the frequency shifts and the charge transfer resistance after interaction of AGP with Con A in different VEM treatments using QCM-D and EIS measurements. These changes were also proved based on the cell ultrastructure examined by TEM and SEM. The LA-ICP-MS studies provided details on the metallomics profile in melanoma cells treated with and without VEM. The studies evidence that vemurafenib modifies the glycans structures and metallomics profile in melanoma cells harboring BRAF mutation that can be further implied in the resistance phenomenon. Therefore, our data opens a new avenue for further studies in the short-term addressing novel targets that hopefully can be used to improve the therapeutic regiment in advanced melanoma patients. The innovating potential of this study is fully credible and has a real impact on the global patient society suffering from advanced and metastatic melanomas.


Assuntos
Melanoma/metabolismo , Metais/metabolismo , Mutação , Polissacarídeos/química , Proteínas Proto-Oncogênicas B-raf/genética , Vemurafenib/farmacologia , Concanavalina A/química , Concanavalina A/metabolismo , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Metais/análise , Orosomucoide/química , Orosomucoide/metabolismo , Inibidores de Proteínas Quinases/farmacologia
18.
Biosens Bioelectron ; 167: 112446, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32818748

RESUMO

Fast, simple in use and highly effective voltammetric enantiosensor dedicated for determination of thalidomide (TD) enantiomers (especially towards the toxic (S)-enantiomer) in blood plasma is still desirable. Here we have proven that newly synthesized chiral naphthalene diimide (NDI) derivatives are excellent electroactive materials for TD enantiosensors. The recognition process relies on the specific interaction between the chiral NDI receptor and the thalidomide enantiomer of the opposite configuration. This unique specific interaction between (S)-thalidomide and (R)-NDI derivative counterparts, evident in the DPV voltammograms, was confirmed by molecular modeling. The demonstrated voltammetric enantiosensors are characterized by the low detection limit at the level of µg·L-1, wide analytical range from 5·10-4 - 10 mg·L-1, high selectivity and long lifetime. The results of the recovery rates showed a very good degree of accuracy towards the determination of (S)-thalidomide in the blood samples, so it can be successfully used in the analysis of clinical samples.


Assuntos
Técnicas Biossensoriais , Talidomida , Imidas , Naftalenos , Plasma , Estereoisomerismo
19.
Int J Mol Sci ; 21(16)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823816

RESUMO

This work presents a new look at the application of cyclodextrins (CD) as a drug nanocarrier. Two different cyclodextrins (αCD, ßCD) were covalently conjugated to branched polyethylenimine (PEI), which was additionally functionalized with folic acid (PEI-ßCD-αCD-FA). Here, we demonstrated that the combination of αCD and ßCD enabled to load and control release of two anticancer drugs: doxorubicin (DOX) and beta-lapachone (beta-LP) (DOX in ß-CD and beta-LP into α-CD) via host-guest inclusion. The PEI-ßCD(DOX)-αCD-FA nanoconjugate was used to transport anticancer drugs into A549 lung cancer cells for estimation the cytotoxic and antitumor effect of this nanoconjugate. The presence of FA molecules should facilitate the penetration of studied nanoconjugate into the cell. Whereas, the non-cellular experiments proved that the drugs are released from the carrier mainly in the pH 4.0. The release mechanism is found to be anomalous in all studied cases.


Assuntos
Ciclodextrinas/química , Doxorrubicina/farmacologia , Naftoquinonas/farmacologia , Polietilenoimina/química , Células A549 , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada , Doxorrubicina/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Difusão Dinâmica da Luz , Ácido Fólico/farmacologia , Humanos , Hidrodinâmica , Cinética , Nanoconjugados/química , Naftoquinonas/química , Tamanho da Partícula , Polímeros/química , Espectroscopia de Prótons por Ressonância Magnética , Técnicas de Microbalança de Cristal de Quartzo , Espectrofotometria Ultravioleta
20.
Regul Toxicol Pharmacol ; 108: 104478, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31539568

RESUMO

Worldwide, drug-induced liver injury (DILI) is a major cause of hepatic failure. It is also the leading cause of withdrawal, cautionary labeling, and restricted usage of licensed drugs; therefore, European Medicines Agency (EMA) and United States Food and Drug Administration (FDA) warn that the existing methods of assessing DILI are insufficient and that some of the translational biomarkers of hepatotoxicity must be relooked. Magnetic resonance imaging (MRI) seems to be a proper tool in elucidating the effects of DILI in both preclinical and clinical studies, providing excellent visualization of the morphology of the liver parenchyma. Therefore, herein, we propose preclinical MRI assessment of liver injury in experimental paracetamol-treated rats. Quantitative MRI clearly provides evidence of adverse effects in the liver tissue caused by a single overdose of paracetamol (1 g kg-1 and 1.5 g kg-1 b.w.). The results of the MRI were confirmed by the histopathological examination (H&E) of the rat liver specimen, however the adverse effects were not disclosed due to standard aminotransferase assays (ALT/AST) in rat blood serum. The results of our analysis demonstrate the successful application of MRI in the examination of paracetamol-induced hepatotoxicity in rats; it has a potential to serve as the early diagnostic tool for the prediction of DILI in preclinical evaluation.


Assuntos
Acetaminofen/efeitos adversos , Analgésicos/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico por imagem , Imageamento por Ressonância Magnética , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/patologia , Avaliação Pré-Clínica de Medicamentos , Feminino , Fígado/diagnóstico por imagem , Fígado/efeitos dos fármacos , Fígado/patologia , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA