Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Adv Sci (Weinh) ; 11(16): e2308797, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38355302

RESUMO

Ferroelectric wurtzite-type aluminum scandium nitride (Al1-xScxN) presents unique properties that can enhance the performance of non-volatile memory technologies. The realization of the full potential of Al1-xScxN requires a comprehensive understanding of the mechanism of polarization reversal and domain structure dynamics involved in the ferroelectric switching process. In this work, transient current integration measurements performed by a pulse switching method are combined with domain imaging by piezoresponse force microscopy (PFM) to investigate the kinetics of domain nucleation and wall motion during polarization reversal in Al0.85Sc0.15N capacitors. In the studied electric field range (from 4.4 to 5.6 MV cm-1), ferroelectric switching proceeds via domain nucleation and wall movement. The currently available phenomenological models are shown to not fully capture all the details of the complex dynamics of polarization reversal in Al0.85Sc0.15N. PFM reveals a non-linear increase of both domain nucleation rate and lateral wall velocity during the switching process, as well as the dependency of the domain pattern on the polarization reversal direction. A continuously faster N- to M-polar switching upon cycling is reported and ascribed to an increasing number of M-polar nucleation sites and density of domain walls.

2.
Nat Commun ; 15(1): 860, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287021

RESUMO

HfO2-based thin films hold huge promise for integrated devices as they show full compatibility with semiconductor technologies and robust ferroelectric properties at nanometer scale. While their polarization switching behavior has been widely investigated, their electromechanical response received much less attention so far. Here, we demonstrate that piezoelectricity in Hf0.5Zr0.5O2 ferroelectric capacitors is not an invariable property but, in fact, can be intrinsically changed by electrical field cycling. Hf0.5Zr0.5O2 capacitors subjected to ac cycling undergo a continuous transition from a positive effective piezoelectric coefficient d33 in the pristine state to a fully inverted negative d33 state, while, in parallel, the polarization monotonically increases. Not only can the sign of d33 be uniformly inverted in the whole capacitor volume, but also, with proper ac training, the net effective piezoresponse can be nullified while the polarization is kept fully switchable. Moreover, the local piezoresponse force microscopy signal also gradually goes through the zero value upon ac cycling. Density functional theory calculations suggest that the observed behavior is a result of a structural transformation from a weakly-developed polar orthorhombic phase towards a well-developed polar orthorhombic phase. The calculations also suggest the possible occurrence of a non-piezoelectric ferroelectric Hf0.5Zr0.5O2. Our experimental findings create an unprecedented potential for tuning the electromechanical functionality of ferroelectric HfO2-based devices.

3.
Nanoscale ; 15(3): 1248-1259, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36541680

RESUMO

MXenes, two-dimensional transition metal carbides, nitrides, and carbonitrides, are known for their exceptional electronic and mechanical properties. Yet, the experimental efforts toward the realization of MXene-based nanoelectromechanical systems (NEMS) combining electrical and mechanical functionalities of MXenes at the nanoscale remain very limited. Here, we demonstrate a high-yield fabrication of the electromechanical devices based on individual suspended monolayer MXene flakes. We employed Ti3C2Tx, the most popular MXene material to date, that can be produced as high-quality micrometer-scale monolayer flakes with a high electrical conductivity of over 10 000 S cm-1 and a high effective Young's modulus of about 330 GPa. These Ti3C2Tx flakes can be transferred over prefabricated trenches in a Si/Si3N4 substrate at a high yield, potentially enabling fabrication of hundreds of electromechanical devices based on suspended MXene monolayers. We demonstrate very clean, uniform, and well-stretched membranes with different dimensions, with Ti3C2Tx flakes suspended over trenches with gaps ranging from 200 nm to 2 µm. The resulting Ti3C2Tx monolayer membranes were electrostatically actuated, while their vertical displacement was monitored using a tip of an atomic force microscope (AFM). The devices reliably responded to the electrostatic actuation in ambient conditions over multiple cycles and with different measurement parameters, such as AC frequency, AC voltage amplitude, and AFM tip loading force. The demonstration of the high-yield fabrication of working electromechanical devices based on suspended Ti3C2Tx MXene membranes at the ultimate monolayer limit paves the way for the future exploration of the potential of MXenes for NEMS applications.

4.
Adv Mater ; 34(47): e2206237, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36210741

RESUMO

Piezoresponse force microscopy (PFM) is widely used for characterization and exploration of the nanoscale properties of ferroelectrics. However, quantification of the PFM signal is challenging due to the convolution of various extrinsic and intrinsic contributions. Although quantification of the PFM amplitude signal has received considerable attention, quantification of the PFM phase signal has not been addressed. A properly calibrated PFM phase signal can provide valuable information on the sign of the local piezoelectric coefficient-an important and nontrivial issue for emerging ferroelectrics. In this work, two complementary methodologies to calibrate the PFM phase signal are discussed. The first approach is based on using a standard reference sample with well-known independently measured piezoelectric coefficients, while the second approach exploits the electrostatic sample-cantilever interactions to determine the parasitic phase offset. Application of these methodologies to studies of the piezoelectric behavior in ferroelectric HfO2 -based thin-film capacitors reveals intriguing variations in the sign of the longitudinal piezoelectric coefficient, d33,eff . It is shown that the piezoelectric properties of the HfO2 -based capacitors are inherently sensitive to their thickness, electrodes, as well as deposition methods, and can exhibit wide variations including a d33,eff sign change within a single device.

5.
Adv Mater ; 34(45): e2203028, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36114716

RESUMO

Ferroelectric domain walls provide a fertile environment for novel materials physics. If a polarization discontinuity arises, it can drive a redistribution of electronic carriers and changes in band structure, which often result in emergent 2D conductivity. If such a discontinuity is not tolerated, then its amelioration usually involves the formation of complex topological patterns, such as flux-closure domains, dipolar vortices, skyrmions, merons, or Hopfions. The degrees of freedom required for the development of such patterns, in which dipolar rotation is a hallmark, are readily found in multiaxial ferroelectrics. In uniaxial ferroelectrics, where only two opposite polar orientations are possible, it has been assumed that discontinuities are unavoidable when antiparallel components of polarization meet. This perception has been borne out by the appearance of charged conducting domain walls in systems such as hexagonal manganites and lithium niobate. Here, experimental and theoretical investigations on lead germanate (Pb5 Ge3 O11 ) reveal that polar discontinuities can be obviated at head-to-head and tail-to-tail domain walls by mutual domain bifurcation along two different axes, creating a characteristic saddle-point domain wall morphology and associated novel dipolar topology, removing the need for screening charge accumulation and associated conductivity enhancement.

6.
Adv Mater ; 34(35): e2205359, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35801685

RESUMO

Resonant tunneling is a quantum-mechanical effect in which electron transport is controlled by the discrete energy levels within a quantum-well (QW) structure. A ferroelectric resonant tunneling diode (RTD) exploits the switchable electric polarization state of the QW barrier to tune the device resistance. Here, the discovery of robust room-temperature ferroelectric-modulated resonant tunneling and negative differential resistance (NDR) behaviors in all-perovskite-oxide BaTiO3 /SrRuO3 /BaTiO3 QW structures is reported. The resonant current amplitude and voltage are tunable by the switchable polarization of the BaTiO3 ferroelectric with the NDR ratio modulated by ≈3 orders of magnitude and an OFF/ON resistance ratio exceeding a factor of 2 × 104 . The observed NDR effect is explained an energy bandgap between Ru-t2g and Ru-eg orbitals driven by electron-electron correlations, as follows from density functional theory calculations. This study paves the way for ferroelectric-based quantum-tunneling devices in future oxide electronics.

7.
Adv Mater ; 34(32): e2204298, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35733393

RESUMO

Recently, electrically conducting heterointerfaces between dissimilar band insulators (such as lanthanum aluminate and strontium titanate) have attracted considerable research interest. Charge transport and fundamental aspects of conduction have been thoroughly explored. Perhaps surprisingly, similar studies on conceptually much simpler conducting homointerfaces, such as domain walls, are not nearly so well developed. Addressing this disparity, magnetoresistance is herein reported in approximately conical 180° charged domain walls, in partially switched ferroelectric thin-film single-crystal lithium niobate. This system is ideal for such measurements: first, the conductivity difference between domains and domain walls is unusually large (a factor of 1013 ) and hence currents driven through the thin film, between planar top and bottom electrodes, are overwhelmingly channeled along the walls; second, when electrical contact is made to the top and bottom of the domain walls and a magnetic field is applied along their cone axes, then the test geometry mirrors that of a Corbino disk: a textbook arrangement for geometric magnetoresistance measurement. Data imply carriers with extremely high room-temperature Hall mobilities of up to ≈3700 cm2 V-1 s-1 . This is an unparalleled value for oxide interfaces (and for bulk oxides) comparable to mobilities in other systems seen at cryogenic, rather than at room, temperature.

8.
Nat Mater ; 21(8): 903-909, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35761058

RESUMO

Ferroelectric HfO2-based materials hold great potential for the widespread integration of ferroelectricity into modern electronics due to their compatibility with existing Si technology. Earlier work indicated that a nanometre grain size was crucial for the stabilization of the ferroelectric phase. This constraint, associated with a high density of structural defects, obscures an insight into the intrinsic ferroelectricity of HfO2-based materials. Here we demonstrate that stable and enhanced polarization can be achieved in epitaxial HfO2 films with a high degree of structural order (crystallinity). An out-of-plane polarization value of 50 µC cm-2 has been observed at room temperature in Y-doped HfO2(111) epitaxial thin films, with an estimated full value of intrinsic polarization of 64 µC cm-2, which is in close agreement with density functional theory calculations. The crystal structure of films reveals the Pca21 orthorhombic phase with small rhombohedral distortion, underlining the role of the structural constraint in stabilizing the ferroelectric phase. Our results suggest that it could be possible to exploit the intrinsic ferroelectricity of HfO2-based materials, optimizing their performance in device applications.

9.
Nano Lett ; 22(3): 1047-1052, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35041432

RESUMO

Strain engineering is a powerful strategy to control the physical properties of material-enabling devices with enhanced functionality and improved performance. Here, we investigate a modulation of the transport behavior of the two-dimensional MoS2 junctions under the mechanical stress induced by a tip of an atomic force microscope (AFM). We show that the junction resistance can be reversibly tuned by up to 4 orders of magnitude by altering a tip-induced force. Analysis of the stress-induced evolution of the I-V characteristics indicates a combined effect of the tip-induced strain and strain gradient on the energy barrier height and profile. In addition, we show that the tip-generated flexoelectric effect leads to significant enhancement of the photovoltaic effect in the MoS2 junctions. A combination of the optical and mechanical stimuli facilitates reversible photomechanical tuning of resistance of the narrow-band 2D semiconductors and development of devices with an enhanced photovoltaic response.

10.
Nat Commun ; 12(1): 7301, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911930

RESUMO

Because of its compatibility with semiconductor-based technologies, hafnia (HfO2) is today's most promising ferroelectric material for applications in electronics. Yet, knowledge on the ferroic and electromechanical response properties of this all-important compound is still lacking. Interestingly, HfO2 has recently been predicted to display a negative longitudinal piezoelectric effect, which sets it apart from classic ferroelectrics (e.g., perovskite oxides like PbTiO3) and is reminiscent of the behavior of some organic compounds. The present work corroborates this behavior, by first-principles calculations and an experimental investigation of HfO2 thin films using piezoresponse force microscopy. Further, the simulations show how the chemical coordination of the active oxygen atoms is responsible for the negative longitudinal piezoelectric effect. Building on these insights, it is predicted that, by controlling the environment of such active oxygens (e.g., by means of an epitaxial strain), it is possible to change the sign of the piezoelectric response of the material.

12.
Nat Commun ; 12(1): 1674, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723249

RESUMO

Multi-functional thin films of boron (B) doped Cr2O3 exhibit voltage-controlled and nonvolatile Néel vector reorientation in the absence of an applied magnetic field, H. Toggling of antiferromagnetic states is demonstrated in prototype device structures at CMOS compatible temperatures between 300 and 400 K. The boundary magnetization associated with the Néel vector orientation serves as state variable which is read via magnetoresistive detection in a Pt Hall bar adjacent to the B:Cr2O3 film. Switching of the Hall voltage between zero and non-zero values implies Néel vector rotation by 90 degrees. Combined magnetometry, spin resolved inverse photoemission, electric transport and scanning probe microscopy measurements reveal B-dependent TN and resistivity enhancement, spin-canting, anisotropy reduction, dynamic polarization hysteresis and gate voltage dependent orientation of boundary magnetization. The combined effect enables H = 0, voltage controlled, nonvolatile Néel vector rotation at high-temperature. Theoretical modeling estimates switching speeds of about 100 ps making B:Cr2O3 a promising multifunctional single-phase material for energy efficient nonvolatile CMOS compatible memory applications.

13.
Adv Mater ; 33(10): e2006089, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33533113

RESUMO

The synthesis of fully epitaxial ferroelectric Hf0.5 Zr0.5 O2 (HZO) thin films through the use of a conducting pyrochlore oxide electrode that acts as a structural and chemical template is reported. Such pyrochlores, exemplified by Pb2 Ir2 O7 (PIO) and Bi2 Ru2 O7 (BRO), exhibit metallic conductivity with room-temperature resistivity of <1 mΩ cm and are closely lattice matched to yttria-stabilized zirconia substrates as well as the HZO layers grown on top of them. Evidence for epitaxy and domain formation is established with X-ray diffraction and scanning transmission electron microscopy, which show that the c-axis of the HZO film is normal to the substrate surface. The emergence of the non-polar-monoclinic phase from the polar-orthorhombic phase is observed when the HZO film thickness is ≥≈30 nm. Thermodynamic analyses reveal the role of epitaxial strain and surface energy in stabilizing the polar phase as well as its coexistence with the non-polar-monoclinic phase as a function of film thickness.

14.
Nat Commun ; 12(1): 7, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397890

RESUMO

Intentional doping is the core of semiconductor technologies to tune electrical and optical properties of semiconductors for electronic devices, however, it has shown to be a grand challenge for halide perovskites. Here, we show that some metal ions, such as silver, strontium, cerium ions, which exist in the precursors of halide perovskites as impurities, can n-dope the surface of perovskites from being intrinsic to metallic. The low solubility of these ions in halide perovskite crystals excludes the metal impurities to perovskite surfaces, leaving the interior of perovskite crystals intrinsic. Computation shows these metal ions introduce many electronic states close to the conduction band minimum of perovskites and induce n-doping, which is in striking contrast to passivating ions such as potassium and rubidium ion. The discovery of metallic surface doping of perovskites enables new device and material designs that combine the intrinsic interior and heavily doped surface of perovskites.

15.
Adv Funct Mater ; 30(28): 2000109, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32684905

RESUMO

A domain wall-enabled memristor is created, in thin film lithium niobate capacitors, which shows up to twelve orders of magnitude variation in resistance. Such dramatic changes are caused by the injection of strongly inclined conducting ferroelectric domain walls, which provide conduits for current flow between electrodes. Varying the magnitude of the applied electric-field pulse, used to induce switching, alters the extent to which polarization reversal occurs; this systematically changes the density of the injected conducting domain walls in the ferroelectric layer and hence the resistivity of the capacitor structure as a whole. Hundreds of distinct conductance states can be produced, with current maxima achieved around the coercive voltage, where domain wall density is greatest, and minima associated with the almost fully switched ferroelectric (few domain walls). Significantly, this "domain wall memristor" demonstrates a plasticity effect: when a succession of voltage pulses of constant magnitude is applied, the resistance changes. Resistance plasticity opens the way for the domain wall memristor to be considered for artificial synapse applications in neuromorphic circuits.

16.
ACS Nano ; 14(1): 746-754, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31887010

RESUMO

Neuromorphic visual sensory and memory systems, which can perceive, process, and memorize optical information, represent core technology for artificial intelligence and robotics with autonomous navigation. An optoelectronic synapse with an elegant integration of biometric optical sensing and synaptic learning functions can be a fundamental element for the hardware-implementation of such systems. Here, we report a class of ferroelectric field-effect memristive transistors made of a two-dimensional WS2 semiconductor atop a ferroelectric PbZr0.2Ti0.8O3 (PZT) thin film for optoelectronic synaptic devices. The WS2 channel exhibits voltage- and light-controllable memristive switching, dependent on the optically and electrically tunable ferroelectric domain patterns in the underlying PZT layer. These devices consequently show the emulation of optically driven synaptic functionalities including both short- and long-term plasticity as well as the implementation of brainlike learning rules. Integration of these rich synaptic functionalities into one single artificial optoelectronic device could allow the development of future neuromorphic electronics capable of optical information sensing and learning.

17.
Adv Mater ; 31(48): e1902890, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31588637

RESUMO

Domain wall nanoelectronics is a rapidly evolving field, which explores the diverse electronic properties of the ferroelectric domain walls for application in low-dimensional electronic systems. One of the most prominent features of the ferroelectric domain walls is their electrical conductivity. Here, using a combination of scanning probe and scanning transmission electron microscopy, the mechanism of the tunable conducting behavior of the domain walls in the sub-micrometer thick films of the technologically important ferroelectric LiNbO3 is explored. It is found that the electric bias generates stable domains with strongly inclined domain boundaries with the inclination angle reaching 20° with respect to the polar axis. The head-to-head domain boundaries exhibit high conductance, which can be modulated by application of the sub-coercive voltage. Electron microscopy visualization of the electrically written domains and piezoresponse force microscopy imaging of the very same domains reveals that the gradual and reversible transition between the conducting and insulating states of the domain walls results from the electrically induced wall bending near the sample surface. The observed modulation of the wall conductance is corroborated by the phase-field modeling. The results open a possibility for exploiting the conducting domain walls as the electrically controllable functional elements in the multilevel logic nanoelectronics devices.

18.
ACS Appl Mater Interfaces ; 11(38): 35115-35121, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31460741

RESUMO

Ferroelectric (FE) HfO2-based thin films, which are considered as one of the most promising material systems for memory device applications, exhibit an adverse tendency for strong imprint. Manifestation of imprint is a shift of the polarization-voltage (P-V) loops along the voltage axis due to the development of an internal electric bias, which can lead to the failure of the writing and retention functions. Here, to gain insight into the mechanism of the imprint effect in La-doped HfO2 (La:HfO2) capacitors, we combine the pulse switching technique with high-resolution domain imaging by means of piezoresponse force microscopy. This approach allows us to establish a correlation between the macroscopic switching characteristics and domain time-voltage-dependent behavior. It has been shown that the La:HfO2 capacitors exhibit a much more pronounced imprint compared to Pb(Zr,Ti)O3-based FE capacitors. Also, in addition to conventional imprint, which evolves with time in the poled capacitors, an easily changeable imprint, termed as "fluid imprint", with a strong dependence on the switching prehistory and measurement conditions, has been observed. Visualization of the domain structure reveals a specific signature of fluid imprint-continuous switching of polarization in the same direction as the previously applied field that continues a long time after the field was turned off. This effect, termed as "inertial switching", is attributed to charge injection and subsequent trapping at defect sites at the film-electrode interface.

19.
Adv Mater ; 31(36): e1902099, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31353633

RESUMO

Ferroelectric domain walls exhibit a number of new functionalities that are not present in their host material. One of these functional characteristics is electrical conductivity that may lead to future device applications. Although progress has been made, the intrinsic conductivity of BiFeO3 domain walls is still elusive. Here, the intrinsic conductivity of 71° and 109° domain walls is reported by probing the local conductance over a cross section of the BiFeO3 /TbScO3 (001) heterostructure. Through a combination of conductive atomic force microscopy, high-resolution electron energy loss spectroscopy, and phase-field simulations, it is found that the 71° domain wall has an inherently charged nature, while the 109° domain wall is close to neutral. Hence, the intrinsic conductivity of the 71° domain walls is an order of magnitude larger than that of the 109° domain walls associated with bound-charge-induced bandgap lowering. Furthermore, the interaction of adjacent 71° domain walls and domain wall curvature leads to a variation of the charge distribution inside the walls, and causes a discontinuity of potential in the [110]p direction, which results in an alternative conductivity of the neighboring 71° domain walls, and a low conductivity of the 71° domain walls when measurement is taken from the film top surface.

20.
Nat Commun ; 10(1): 1661, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30971688

RESUMO

Since its inception more than 25 years ago, Piezoresponse Force Microscopy (PFM) has become one of the mainstream techniques in the field of nanoferroic materials. This review describes the evolution of PFM from an imaging technique to a set of advanced methods, which have played a critical role in launching new areas of ferroic research, such as multiferroic devices and domain wall nanoelectronics. The paper reviews the impact of advanced PFM modes concerning the discovery and scientific understanding of novel nanoferroic phenomena and discusses challenges associated with the correct interpretation of PFM data. In conclusion, it offers an outlook for future trends and developments in PFM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA