Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
2.
Nucleic Acid Ther ; 33(5): 319-328, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37638793

RESUMO

We describe here the design, synthesis, physicochemical properties, and hepatitis B antiviral activity of new 2'-O-alkyl ribonucleotide N3'→P5' phosphoramidate (2'-O-alkyl-NPO) and (thio)-phosphoramidite (2'-O-alkyl-NPS) oligonucleotide analogs. Oligonucleotides with different 2'-O-alkyl modifications such as 2'-O-methyl, -O-ethyl, -O-allyl, and -O-methoxyethyl combined with 3'-amino sugar-phosphate backbone were synthesized and evaluated. These molecules form stable duplexes with complementary DNA and RNA strands. They show an increase in duplex melting temperatures of up to 2.5°C and 4°C per linkage, respectively, compared to unmodified DNA. The results agree with predominantly C3'-endo sugar pucker conformation. Moreover, 2'-O-alkyl phosphoramidites demonstrate higher hydrolytic stability at pH 5.5 than 2'-deoxy NPOs. In addition, the relative lipophilicity of the 2'-O-alkyl-NPO and NPS oligonucleotides is higher than that of their 3'-O- counterparts. The 2'-O-alkyl-NPS oligonucleotides were evaluated as antisense (ASO) compounds in vitro and in vivo using Hepatitis B virus as a model system. Subcutaneous delivery of GalNAc conjugated 2'-O-MOE-NPS gapmers demonstrated higher activity than the 3'-O-containing 2'-O-MOE counterpart. The properties of 2'-O-alkyl-NPS constructs make them attractive candidates as ASO suitable for further evaluation and development.


Assuntos
Oligonucleotídeos Antissenso , Oligonucleotídeos , Oligonucleotídeos/farmacologia , Oligonucleotídeos/química , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Ácidos Fosfóricos/farmacologia , Ácidos Fosfóricos/química , Amidas/farmacologia , Amidas/química
3.
Mol Cancer Ther ; 22(6): 737-750, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37070671

RESUMO

A select group of patients with hepatocellular carcinomas (HCC) benefit from surgical, radiologic, and systemic therapies that include a combination of anti-angiogenic and immune-checkpoint inhibitors. However, because HCC is generally asymptomatic in its early stages, this not only leads to late diagnosis, but also to therapy resistance. The nucleoside analogue 6-thio-dG (THIO) is a first-in-class telomerase-mediated telomere-targeting anticancer agent. In telomerase expressing cancer cells, THIO is converted into the corresponding 5'-triphosphate, which is efficiently incorporated into telomeres by telomerase, activating telomere damage responses and apoptotic pathways. Here, we show how THIO is effective in controlling tumor growth and, when combined with immune checkpoint inhibitors, is even more effective in a T-cell-dependent manner. We also show telomere stress induced by THIO increases both innate sensing and adaptive antitumor immunity in HCC. Importantly, the extracellular high-mobility group box 1 protein acts as a prototypical endogenous DAMP (Damage Associated Molecular Pattern) in eliciting adaptive immunity by THIO. These results provide a strong rationale for combining telomere-targeted therapy with immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Telomerase , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Telomerase/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Telômero/genética , Imunidade Adaptativa
4.
Blood ; 141(4): 391-405, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36126301

RESUMO

Long noncoding RNAs (lncRNAs) can drive tumorigenesis and are susceptible to therapeutic intervention. Here, we used a large-scale CRISPR interference viability screen to interrogate cell-growth dependency to lncRNA genes in multiple myeloma (MM) and identified a prominent role for the miR-17-92 cluster host gene (MIR17HG). We show that an MIR17HG-derived lncRNA, named lnc-17-92, is the main mediator of cell-growth dependency acting in a microRNA- and DROSHA-independent manner. Lnc-17-92 provides a chromatin scaffold for the functional interaction between c-MYC and WDR82, thus promoting the expression of ACACA, which encodes the rate-limiting enzyme of de novo lipogenesis acetyl-coA carboxylase 1. Targeting MIR17HG pre-RNA with clinically applicable antisense molecules disrupts the transcriptional and functional activities of lnc-17-92, causing potent antitumor effects both in vitro and in vivo in 3 preclinical animal models, including a clinically relevant patient-derived xenograft NSG mouse model. This study establishes a novel oncogenic function of MIR17HG and provides potent inhibitors for translation to clinical trials.


Assuntos
MicroRNAs , Mieloma Múltiplo , RNA Longo não Codificante , Humanos , Animais , Camundongos , RNA Longo não Codificante/genética , Mieloma Múltiplo/genética , Cromatina , MicroRNAs/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
5.
Curr Stem Cell Res Ther ; 18(4): 445-459, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36263477

RESUMO

Cancer stem cells (CSCs) are correlated with poor clinical outcomes due to their contribution to chemotherapy resistance and the formation of metastasis. Multiple cell surface and enzymatic markers have been characterized to identify CSCs, which is important for diagnosis, therapy, and prognosis. This review underlines the role of CSCs and circulating tumor cells (CTCs) in tumor relapse and metastasis, the characteristics of CSC and CTC biomarkers, and the techniques used to detect these cells. We also summarized novel therapeutic approaches toward targeting CSCs, especially focusing on the role of immune checkpoint blockades (ICB), such as anti-programmed death 1 (anti-PD1) and antiprogrammed death ligand-1 (anti-PDL1) therapies. Additionally, we address an intriguing new mechanism of action for small molecular drugs, such as telomere-targeted therapy 6-thio-2'deoxyguanosine (6- thio-dG), and how it reshapes tumor microenvironment to overcome ICB resistance. There are indications, that personalized cancer therapy targeting CSC populations in conjunction with immune-mediated strategy hold promise for the removal of residual therapy-resistant CSCs in the near future.


Assuntos
Células Neoplásicas Circulantes , Humanos , Biomarcadores/metabolismo , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral
6.
Mol Ther Nucleic Acids ; 27: 1103-1115, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35228903

RESUMO

Despite the existence of a prophylactic vaccine against hepatitis B virus (HBV), chronic hepatitis B virus (CHB) infection remains the leading cause of cirrhosis and liver cancer in developing countries. Because HBV persistence is associated with insufficient host immune responses to the infection, development of an immunomodulator as a component of therapeutic vaccination may become an important strategy for treatment CHB. In the present study, we aimed to design a novel immunomodulator with the capacity to subvert immune tolerance to HBV. We developed a lymphoid organ-targeting immunomodulator by conjugating a naturally occurring, lipophilic molecule, α-tocopherol, to a potent CpG oligonucleotide adjuvant pharmacophore. This approach resulted in preferential trafficking of the α-tocopherol-conjugated oligonucleotide to lymphoid organs where it was internalized by antigen-presenting cells (APCs). Moreover, we show that conjugation of the oligonucleotides to α-tocopherol results in micelle-like structure formation, which improved cellular internalization and enhanced immunomodulatory properties of the conjugates. In a mouse model of chronic HBV infection, targeting CpG oligonucleotide to lymphoid organs induced strong cellular and humoral immune responses that resulted in sustained control of the virus. Given the potency and tolerability of an α-tocopherol-conjugated CpG oligonucleotide, this modality could potentially be broadly applied for therapeutic vaccine development.

7.
Anal Chem ; 91(17): 11154-11161, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31386344

RESUMO

Hydrolysis of N3'-P5' phosphoramidate and thiophosphoramidate oligonucleotides with 0.1% formic acid leads to the cleavage of the 3' N-P bond and generates two products, one of which contains a 5'-phosphate. Analysis of the hydrolytic products by liquid chromatography, coupled with mass spectrometry, reveals the mass ladder from both termini, which is used to determine the sequence. While acid hydrolysis does not result in depurination, internal fragments especially in the low mass range are detected. The method is applied to DNA and RNA analogues with and without modifications at the 2'-position. This approach enables rapid sequence confirmation of synthetic phosphoramidate oligonucleotides for quality control as well as denovo sequencing.


Assuntos
Amidas/análise , Formiatos/química , Oligonucleotídeos/análise , Ácidos Fosfóricos/análise , Hidrólise , Espectrometria de Massas
8.
Oncoscience ; 2(8): 693-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26425659

RESUMO

Although telomerase is an almost universal target for cancer therapy, there has been no effective telomerase targeted inhibitor that has progressed to late stage human clinical trials. Recently, we reported that a telomerase-mediated telomere-disrupting compound, 6-thio-2'-deoxyguanosine (6-thio-dG), was very effective at targeting telomerase positive cancer cells while sparing telomerase silent normal cells. 6-thio-dG, a nucleoside analogue of the already-approved drug 6-thioguanine, is incorporated into telomeres by telomerase, resulting in disruption of the telomere-protecting shelterin complex. This disruption leads to Telomere dysfunction-Induced Foci (TIFs) formation and rapid cell death for the vast majority of cancer cells. Since most chemotherapies eventually fail due to drug acquired resistance, novel drugs such as 6-thio-dG, as a single first line agent or in the maintenance setting, may represent an effective new treatment for cancer patients.

9.
Mol Cancer ; 14: 134, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26183089

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most frequent and aggressive type of adult brain tumor. Most GBMs express telomerase; a high level of intra-tumoral telomerase activity (TA) is predictive of poor prognosis. Thus, telomerase inhibitors are promising options to treat GBM. These inhibitors increase the response to radiotherapy (RT), in vitro as well as in vivo. Since typical treatments for GBM include RT, our objective was to evaluate the efficiency of Imetelstat (TA inhibitor) combined with RT. FINDINGS: We used a murine orthotopic model of human GBM (N = 8 to11 mice per group) and µMRI imaging to evaluate the efficacy of Imetelstat (delivered by intra-peritoneal injection) alone and combined with RT. Using a clinically established protocol, we demonstrated that Imetelstat significantly: (i) inhibited the TA in the very center of the tumor, (ii) reduced tumor volume as a proportion of TA inhibition, and (iii) increased the response to RT, in terms of tumor volume regression and survival increase. CONCLUSIONS: Imetelstat is currently evaluated in refractory brain tumors in young patients (without RT). Our results support its clinical evaluation combined with RT to treat GBM.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Indóis/farmacologia , Niacinamida/análogos & derivados , Tolerância a Radiação/efeitos dos fármacos , Telomerase/antagonistas & inibidores , Animais , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Modelos Animais de Doenças , Glioblastoma/diagnóstico , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Humanos , Camundongos , Niacinamida/farmacologia , Oligonucleotídeos , Telomerase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Proc Natl Acad Sci U S A ; 112(13): 3892-7, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25775582

RESUMO

Immunomodulatory nucleic acids have extraordinary promise for treating disease, yet clinical progress has been limited by a lack of tools to safely increase activity in patients. Immunomodulatory nucleic acids act by agonizing or antagonizing endosomal toll-like receptors (TLR3, TLR7/8, and TLR9), proteins involved in innate immune signaling. Immunomodulatory spherical nucleic acids (SNAs) that stimulate (immunostimulatory, IS-SNA) or regulate (immunoregulatory, IR-SNA) immunity by engaging TLRs have been designed, synthesized, and characterized. Compared with free oligonucleotides, IS-SNAs exhibit up to 80-fold increases in potency, 700-fold higher antibody titers, 400-fold higher cellular responses to a model antigen, and improved treatment of mice with lymphomas. IR-SNAs exhibit up to eightfold increases in potency and 30% greater reduction in fibrosis score in mice with nonalcoholic steatohepatitis (NASH). Given the clinical potential of SNAs due to their potency, defined chemical nature, and good tolerability, SNAs are attractive new modalities for developing immunotherapies.


Assuntos
Neoplasias Experimentais/terapia , Hepatopatia Gordurosa não Alcoólica/terapia , Ácidos Nucleicos/química , Receptores Toll-Like/agonistas , Animais , Antígenos/química , Linhagem Celular , Feminino , Humanos , Imunidade Inata , Cirrose Hepática/patologia , Linfoma/terapia , Camundongos , Camundongos Endogâmicos C57BL , Nanomedicina/métodos , Nanopartículas/química , Conformação de Ácido Nucleico , Ácidos Nucleicos/uso terapêutico , Oligonucleotídeos/uso terapêutico
11.
Cancer Discov ; 5(1): 82-95, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25516420

RESUMO

UNLABELLED: The relationships between telomerase and telomeres represent attractive targets for new anticancer agents. Here, we report that the nucleoside analogue 6-thio-2'-deoxyguanosine (6-thio-dG) is recognized by telomerase and is incorporated into de novo-synthesized telomeres. This results in modified telomeres, leading to telomere dysfunction, but only in cells expressing telomerase. 6-Thio-dG, but not 6-thioguanine, induced telomere dysfunction in telomerase-positive human cancer cells and hTERT-expressing human fibroblasts, but not in telomerase-negative cells. Treatment with 6-thio-dG resulted in rapid cell death for the vast majority of the cancer cell lines tested, whereas normal human fibroblasts and human colonic epithelial cells were largely unaffected. In A549 lung cancer cell-based mouse xenograft studies, 6-thio-dG caused a decrease in the tumor growth rate superior to that observed with 6-thioguanine treatment. In addition, 6-thio-dG increased telomere dysfunction in tumor cells in vivo. These results indicate that 6-thio-dG may provide a new telomere-addressed telomerase-dependent anticancer approach. SIGNIFICANCE: Telomerase is an almost universal oncology target, yet there are few telomerase-directed therapies in human clinical trials. In the present study, we demonstrate a small-molecule telomerase substrate approach that induces telomerase-mediated targeted "telomere uncapping," but only in telomerase-positive cancer cells, with minimal effects in normal telomerase-negative cells.


Assuntos
Desoxiguanosina/análogos & derivados , Telomerase/metabolismo , Telômero/metabolismo , Tionucleosídeos/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Desoxiguanosina/metabolismo , Desoxiguanosina/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Xenoenxertos , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos , Especificidade por Substrato , Homeostase do Telômero/efeitos dos fármacos , Homeostase do Telômero/genética , Encurtamento do Telômero/efeitos dos fármacos , Encurtamento do Telômero/genética , Tioguanina/farmacologia , Tionucleosídeos/metabolismo , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Proc Natl Acad Sci U S A ; 110(44): 17732-7, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24101473

RESUMO

Recent advances suggest that it may be possible to construct simple artificial cells from two subsystems: a self-replicating cell membrane and a self-replicating genetic polymer. Although multiple pathways for the growth and division of model protocell membranes have been characterized, no self-replicating genetic material is yet available. Nonenzymatic template-directed synthesis of RNA with activated ribonucleotide monomers has led to the copying of short RNA templates; however, these reactions are generally slow (taking days to weeks) and highly error prone. N3'-P5'-linked phosphoramidate DNA (3'-NP-DNA) is similar to RNA in its overall duplex structure, and is attractive as an alternative to RNA because the high reactivity of its corresponding monomers allows rapid and efficient copying of all four nucleobases on homopolymeric RNA and DNA templates. Here we show that both homopolymeric and mixed-sequence 3'-NP-DNA templates can be copied into complementary 3'-NP-DNA sequences. G:T and A:C wobble pairing leads to a high error rate, but the modified nucleoside 2-thiothymidine suppresses wobble pairing. We show that the 2-thiothymidine modification increases both polymerization rate and fidelity in the copying of a 3'-NP-DNA template into a complementary strand of 3'-NP-DNA. Our results suggest that 3'-NP-DNA has the potential to serve as the genetic material of artificial biological systems.


Assuntos
Amidas/química , Células Artificiais/metabolismo , DNA/química , Engenharia Genética/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Ácidos Fosfóricos/química , Polímeros/química , Polímeros/síntese química , Cromatografia Líquida , Espectrometria de Massas , Análise de Sequência de DNA
13.
PLoS One ; 8(7): e70428, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922990

RESUMO

We report that Imetelstat, a telomerase inhibitor that binds to the RNA component of telomerase (hTR), can sensitize primary CLL lymphocytes to fludarabine in vitro. This effect was observed in lymphocytes from clinically resistant cases and with cytogenetic abnormalities associated with bad prognosis. Imetelstat mediated-sensitization to fludarabine was not associated with telomerase activity, but with the basal expression of Ku80. Since both Imetelstat and Ku80 bind hTR, we assessed 1) if Ku80 and Imetelstat alter each other's binding to hTR in vitro and 2) the effect of an oligonucleotide complementary to the Ku binding site in hTR (Ku oligo) on the survival of primary CLL lymphocytes exposed to fludarabine. We show that Imetelstat interferes with the binding of Ku70/80 (Ku) to hTR and that the Ku oligo can sensitize CLL lymphocytes to FLU. Our results suggest that Ku binding to hTR may contribute to fludarabine resistance in CLL lmphocytes. This is the first report highlighting the potentially broad effectiveness of Imetelstat in CLL, and the potential biological and clinical implications of a functional interaction between Ku and hTR in primary human cancer cells.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Linfoide/genética , Telomerase/genética , Vidarabina/análogos & derivados , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Domínio Catalítico/efeitos dos fármacos , Deleção Cromossômica , Cromossomos Humanos Par 11 , Cromossomos Humanos Par 17 , DNA Helicases/genética , DNA Helicases/metabolismo , Ativação Enzimática , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Humanos , Indóis/farmacologia , Autoantígeno Ku , Leucemia Linfoide/tratamento farmacológico , Leucemia Linfoide/metabolismo , Pessoa de Meia-Idade , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Oligonucleotídeos , Fosforilação , Ligação Proteica/efeitos dos fármacos , Telomerase/química , Telomerase/metabolismo , Vidarabina/farmacologia , Vidarabina/uso terapêutico
14.
Int J Oncol ; 42(5): 1709-15, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23545855

RESUMO

Telomerase is a cellular ribonucleoprotein reverse transcriptase that plays a crucial role in telomere maintenance. This enzyme is expressed in approximately 90% of human tumors, but not in the majority of normal somatic cells. imetelstat sodium (GRN163L), is a 13-mer oligonucleotide N3'→P5' thio-phosphoramidate lipid conjugate, which represents the latest generation of telomerase inhibitors targeting the template region of the human functional telomerase RNA (hTR) subunit. In preclinical trials, this compound has been found to inhibit telomerase activity in multiple cancer cell lines, as well as in vivo xenograft mouse models. Currently, GRN163L is being investigated in several clinical trials, including a phase II human non­small cell lung cancer clinical trial, in a maintenance setting following standard doublet chemotherapy. In addition to the inhibition of telomerase activity in cancer cell lines, GRN163L causes morphological cell rounding changes, independent of hTR expression or telomere length. This leads to the loss of cell adhesion properties; however, the mechanism underlying this effect is not yet fully understood. In the present study, we observed that GRN163L treatment leads to the loss of adhesion in A549 lung cancer cells, due to decreased E-cadherin expression, leading to the disruption of the cytoskeleton through the alteration of actin, tubulin and intermediate filament organization. Consequently, the less adherent cancer cells initially cease to proliferate and are arrested in the G1 phase of the cell cycle, accompanied by decreased matrix metalloproteinase-2 (MMP-2) expression. These effects of GRN163L are independent of its telomerase catalytic activity and may increase the therapeutic efficacy of GRN163L by decreasing the adhesion, proliferation and metastatic potential of cancer cells in vivo.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Indóis/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Niacinamida/análogos & derivados , Telomerase/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Ensaios Clínicos como Assunto , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Niacinamida/administração & dosagem , Oligonucleotídeos , Telomerase/antagonistas & inibidores , Homeostase do Telômero/efeitos dos fármacos
15.
Biochim Biophys Acta ; 1823(12): 2130-5, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22906540

RESUMO

Telomerase is mainly active in human tumor cells, which provides an opportunity for a therapeutic window on telomerase targeting. We sought to evaluate the potential of the thio-phosphoramidate oligonucleotide inhibitor of telomerase, imetelstat, as a drug candidate for treatment of esophageal cancer. Our results showed that imetelstat inhibited telomerase activity in a dose-dependent manner in esophageal cancer cells. After only 1 week of imetelstat treatment, a reduction of colony formation ability of esophageal cancer cells was observed. Furthermore, long-term treatment with imetelstat decreased cell growth of esophageal cancer cells with different kinetics regarding telomere lengths. Short-term imetelstat treatment also increased γ-H2AX and 53BP1 foci staining in the esophageal cancer cell lines indicating a possible induction of DNA double strand breaks (DSBs). We also found that pre-treatment with imetelstat led to increased number and size of 53BP1 foci after ionizing radiation. The increase of 53BP1 foci number was especially pronounced during the first 1h of repair whereas the increase of foci size was prominent later on. This study supports the potential of imetelstat as a therapeutic agent for the treatment of esophageal cancer.


Assuntos
Proliferação de Células/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , Indóis/farmacologia , Niacinamida/análogos & derivados , Radiação Ionizante , Telomerase/antagonistas & inibidores , Telômero/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Proliferação de Células/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , DNA de Neoplasias/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Imunofluorescência , Humanos , Niacinamida/farmacologia , Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Telomerase/genética , Telomerase/metabolismo , Células Tumorais Cultivadas
16.
Transl Oncol ; 3(6): 389-99, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21151478

RESUMO

INTRODUCTION: The incidence of Barrett esophageal adenocarcinoma (BEAC) has been increasing at an alarming rate in western countries. In this study, we have evaluated the therapeutic potential of sulforaphane (SFN), an antioxidant derived from broccoli, in BEAC. METHODS: BEAC cells were treated with SFN, alone or in combination with chemotherapeutic, paclitaxel, or telomerase-inhibiting agents (MST-312, GRN163L), and live cell number determined at various time points. The effect on drug resistance/chemosensitivity was evaluated by rhodamine efflux assay. Apoptosis was detected by annexin V labeling and Western blot analysis of poly(ADP-ribose) polymerase cleavage. Effects on genes implicated in cell cycle and apoptosis were determined by Western blot analyses. To evaluate the efficacy in vivo, BEAC cells were injected subcutaneously in severe combined immunodeficient mice, and after the appearance of palpable tumors, mice were treated with SFN. RESULTS: SFN induced both time- and dose-dependent decline in cell survival, cell cycle arrest, and apoptosis. The treatment with SFN also suppressed the expression of multidrug resistance protein, reduced drug efflux, and increased anticancer activity of other antiproliferative agents including paclitaxel. A significant reduction in tumor volume was also observed by SFN in a subcutaneous tumor model of BEAC. Anticancer activity could be attributed to the induction of caspase 8 and p21 and down-regulation of hsp90, a molecular chaperon required for activity of several proliferation-associated proteins. CONCLUSIONS: These data indicate that a natural product with antioxidant properties from broccoli has great potential to be used in chemoprevention and treatment of BEAC.

17.
Chem Biodivers ; 7(3): 477-93, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20232321

RESUMO

Nucleic acids analogues, i.e., oligonucleotide N3'-->P5' phosphoramidates and N3'-->P5' thio-phosphoramidates, containing 3'-amino-3'-deoxy nucleosides with various 2'-substituents were synthesized and extensively studied. These compounds resist nuclease hydrolysis and form stable duplexes with complementary native phosphodiester DNA and, particularly, RNA strands. An increase in duplexes' melting temperature, DeltaT(m), relative to their phosphodiester counterparts, reaches 2.2-4.0 degrees per modified nucleoside. 2'-OH- (RNA-like), 2'-O-Me-, and 2'-ribo-F-nucleoside substitutions result in the highest degree of duplex stabilization. Moreover, under close to physiological salt and pH conditions, the 2'-deoxy- and 2'-fluoro-phosphoramidate compounds form extremely stable triple-stranded complexes with either single- or double-stranded phosphodiester DNA oligonucleotides. Melting temperature, T(m), of these triplexes exceeds T(m) values for the isosequential phosphodiester counterparts by up to 35 degrees . 2'-Deoxy-N3'-->P5' phosphoramidates adopt RNA-like C3'-endo or N-type nucleoside sugar-ring conformations and hence can be used as stable RNA mimetics. Duplexes formed by 2'-deoxy phosphoramidates with complementary RNA strands are not substrates for RNase H-mediated cleavage in vitro. Oligonucleotide phosphoramidates and especially thio-phosphoramidates conjugated with lipid groups are cell-permeable and demonstrate high biological target specific activity in vitro. In vivo, these compounds show good bioavailability and efficient biodistribution to all major organs, while exerting acceptable toxicity at therapeutically relevant doses. Short oligonucleotide N3'-->P5' thio-phosphoramidate conjugated to 5'-palmitoyl group, designated as GRN163L (Imetelstat), was recently introduced as a potent human telomerase inhibitor. GRN163L is not an antisense agent; it is a direct competitive inhibitor of human telomerase, which directly binds to the active site of the enzyme and thus inhibits its activity. This compound is currently in multiple Phase-I and Phase-I/II clinical trials as potential broad-spectrum anticancer agent.


Assuntos
Amidas/química , Oligonucleotídeos/química , Ácidos Fosfóricos/química , Amidas/uso terapêutico , Antineoplásicos/química , DNA/química , Humanos , Oligonucleotídeos/uso terapêutico , Oligonucleotídeos Antissenso , Ácidos Fosfóricos/uso terapêutico , RNA/química , Telomerase/antagonistas & inibidores , Telomerase/metabolismo
18.
Stem Cell Rev Rep ; 6(2): 224-33, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20180048

RESUMO

Telomerase activity is essential for the continued growth and survival of malignant cells, therefore inhibition of this activity presents an attractive target for anti-cancer therapy. The telomerase inhibitor GRN163L, was shown to inhibit the growth of cancer cells both in vitro and in vivo. Mesenchymal stem cells (MSCs) also show telomerase activity in maintaining their self-renewal; therefore the effects of telomerase inhibitors on MSCs may be an issue of concern. MSCs are multipotent cells and are important for the homeostasis of the organism. In this study, we sought to demonstrate in vitro effects of GRN163L on rat MSCs. When MSCs were treated with 1 microM GRN163L, their phenotype changed from spindle-shaped cells to rounded ones and detached from the plate surface, similar to cancer cells. Quantitative-RT-PCR and immunoblotting results revealed that GRN163L holds MSCs at the G1 state of the cell cycle, with a drastic decrease in mRNA and protein levels of cyclin D1 and its cdk counterparts, cdk4 and cdk6. This effect was not observed when MSCs were treated with a mismatch control oligonucleotide. One week after GRN163L was removed, mRNA and protein expressions of the genes, as well as the phenotype of MSCs returned to those of untreated cells. Therefore, we concluded that GRN163L does not interfere with the self-renewal and differentiation of MSCs under short term in vitro culture conditions. Our study provides additional support for treating cancers by administrating GRN163L without depleting the body's stem cell pools.


Assuntos
Células da Medula Óssea/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Oligonucleotídeos/farmacologia , Telomerase/antagonistas & inibidores , Animais , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Ciclina D1/genética , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Feminino , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
PLoS One ; 5(2): e9132, 2010 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-20161752

RESUMO

BACKGROUND: Telomere/telomerase system has been recently recognized as an attractive target for anticancer therapy. Telomerase inhibition results in tumor regression and increased sensitivity to various cytotoxic drugs. However, it has not been fully established yet whether the mediator of these effects is telomerase inhibition per se or telomere shortening resulting from inhibition of telomerase activity. In addition, the characteristics and mechanisms of sensitization to cytotoxic drugs caused by telomerase inhibition has not been elucidated in a systematic manner. METHODOLOGY/PRINCIPAL FINDINGS: In this study we characterized the relative importance of telomerase inhibition versus telomere shortening in cancer cells. Sensitization of cancer cells to cytotoxic drugs was achieved by telomere shortening in a length dependent manner and not by telomerase inhibition per se. In our system this sensitization was related to the mechanism of action of the cytotoxic drug. In addition, telomere shortening affected also other cancer cell functions such as migration. Telomere shortening induced DNA damage whose repair was impaired after administration of cisplatinum while doxorubicin or vincristine did not affect the DNA repair. These findings were verified also in in vivo mouse model. The putative explanation underlying the phenotype induced by telomere shortening may be related to changes in expression of various microRNAs triggered by telomere shortening. CONCLUSIONS/SIGNIFICANCE: To our best knowledge this is the first study characterizing the relative impact of telomerase inhibition and telomere shortening on several aspects of cancer cell phenotype, especially related to sensitivity to cytotoxic drugs and its putative mechanisms. The microRNA changes in cancer cells upon telomere shortening are novel information. These findings may facilitate the development of telomere based approaches in treatment of cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Telômero/genética , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Ensaio Cometa , Dano ao DNA , Reparo do DNA , Relação Dose-Resposta a Droga , Feminino , Humanos , Células K562 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/patologia , Oligonucleotídeos/farmacologia , Telomerase/antagonistas & inibidores , Telomerase/genética , Telomerase/metabolismo , Telômero/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Mol Cancer Ther ; 8(7): 2027-35, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19509275

RESUMO

Telomeres are repetitive (TTAGGG)(n) DNA sequences found at the end of chromosomes that protect the ends from recombination, end to end fusions, and recognition as damaged DNA. Telomerase activity can be detected in 85% to 90% of human tumors, which stabilizes telomeres to prevent apoptosis or cellular senescence. Previous reports showed the efficacy of the novel telomerase template antagonist, GRN163L, as a potential anticancer agent. The objective of the present study was to elucidate the molecular effects of GRN163L in MDA-MB-231 breast cancer cells and to determine whether GRN163L could be used in mechanism-based combination therapy for breast cancer. We observed that GRN163L reduced MDA-MB-231 growth rates without a significant effect on breast cancer cell viability within the first 14 days in vitro. In addition, GRN163L altered cell morphology, actin filament organization, and focal adhesion formation in MDA-MB-231 cells. Importantly, the cellular response to GRN163L significantly augmented the effects of the microtubule stabilizer paclitaxel in MDA-MB-231 breast cancer cell growth in vitro and in vivo compared with paclitaxel alone or a mismatch control oligonucleotide plus paclitaxel. Furthermore, in vitro MDA-MB-231 invasive potential was significantly inhibited with GRN163L and paclitaxel. These data support a rationale for potentially combining GRN163L with paclitaxel for the treatment of breast cancer in the clinical setting.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Oligopeptídeos/farmacologia , Paclitaxel/farmacologia , Telomerase/antagonistas & inibidores , Actinas/metabolismo , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Quimioterapia Combinada , Feminino , Imunofluorescência , Adesões Focais/metabolismo , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica , Oligonucleotídeos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA