Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 135(6): 651-667, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39082138

RESUMO

BACKGROUND: ß-adrenergic receptor (ß-AR) overactivation is a major pathological cue associated with cardiac injury and diseases. AMPK (AMP-activated protein kinase), a conserved energy sensor, regulates energy metabolism and is cardioprotective. However, whether AMPK exerts cardioprotective effects via regulating the signaling pathway downstream of ß-AR remains unclear. METHODS: Using immunoprecipitation, mass spectrometry, site-specific mutation, in vitro kinase assay, and in vivo animal studies, we determined whether AMPK phosphorylates ß-arrestin-1 at serine (Ser) 330. Wild-type mice and mice with site-specific mutagenesis (S330A knock-in [KI]/S330D KI) were subcutaneously injected with the ß-AR agonist isoproterenol (5 mg/kg) to evaluate the causality between ß-adrenergic insult and ß-arrestin-1 Ser330 phosphorylation. Cardiac transcriptomics was used to identify changes in gene expression from ß-arrestin-1-S330A/S330D mutation and ß-adrenergic insult. RESULTS: Metformin could decrease cAMP/PKA (protein kinase A) signaling induced by isoproterenol. AMPK bound to ß-arrestin-1 and phosphorylated Ser330 with the highest phosphorylated mass spectrometry score. AMPK activation promoted ß-arrestin-1 Ser330 phosphorylation in vitro and in vivo. Neonatal mouse cardiomyocytes overexpressing ß-arrestin-1-S330D (active form) inhibited the ß-AR/cAMP/PKA axis by increasing PDE (phosphodiesterase) 4 expression and activity. Cardiac transcriptomics revealed that the differentially expressed genes between isoproterenol-treated S330A KI and S330D KI mice were mainly involved in immune processes and inflammatory response. ß-arrestin-1 Ser330 phosphorylation inhibited isoproterenol-induced reactive oxygen species production and NLRP3 (NOD-like receptor protein 3) inflammasome activation in neonatal mouse cardiomyocytes. In S330D KI mice, the ß-AR-activated cAMP/PKA pathways were attenuated, leading to repressed inflammasome activation, reduced expression of proinflammatory cytokines, and mitigated macrophage infiltration. Compared with S330A KI mice, S330D KI mice showed diminished cardiac fibrosis and improved cardiac function upon isoproterenol exposure. However, the cardiac protection exerted by AMPK was abolished in S330A KI mice. CONCLUSIONS: AMPK phosphorylation of ß-arrestin-1 Ser330 potentiated PDE4 expression and activity, thereby inhibiting ß-AR/cAMP/PKA activation. Subsequently, ß-arrestin-1 Ser330 phosphorylation blocks ß-AR-induced cardiac inflammasome activation and remodeling.


Assuntos
Proteínas Quinases Ativadas por AMP , Isoproterenol , Miócitos Cardíacos , beta-Arrestina 1 , Animais , Fosforilação , beta-Arrestina 1/metabolismo , beta-Arrestina 1/genética , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Isoproterenol/toxicidade , Isoproterenol/farmacologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Camundongos Endogâmicos C57BL , Masculino , Receptores Adrenérgicos beta/metabolismo , Serina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Agonistas Adrenérgicos beta/toxicidade , Células Cultivadas , Transdução de Sinais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Humanos
2.
Sci China Life Sci ; 66(5): 1067-1078, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36449214

RESUMO

Rapid over-activation of ß-adrenergic receptors (ß-AR) following acute stress initiates cardiac inflammation and injury by activating interleukin-18 (IL-18), however, the process of inflammation cascades has not been fully illustrated. The present study aimed to determine the mechanisms of cardiac inflammatory amplification following acute sympathetic activation. With bioinformatics analysis, galectin-3 was identified as a potential key downstream effector of ß-AR and IL-18 activation. The serum level of galectin-3 was positively correlated with norepinephrine or IL-18 in patients with chest pain. In the heart of mice treated with ß-AR agonist isoproterenol (ISO, 5 mg kg-1), galectin-3 expression was upregulated markedly later than IL-18 activation, and Nlrp3-/- and Il18-/- mice did not show ISO-induced galectin-3 upregulation. It was further revealed that cardiomyocyte-derived IL-18 induced galectin-3 expression in macrophages following ISO treatment. Moreover, galectin-3 deficiency suppressed ISO-induced cardiac inflammation and fibrosis without blocking ISO-induced IL-18 increase. Treatment with a galectin-3 inhibitor, but not a ß-blocker, one day after ISO treatment effectively attenuated cardiac inflammation and injury. In conclusion, galectin-3 is upregulated to exaggerate cardiac inflammation and injury following acute ß-AR activation, a galectin-3 inhibitor effectively blocks cardiac injury one day after ß-AR insult.


Assuntos
Galectina 3 , Interleucina-18 , Animais , Camundongos , Galectina 3/genética , Galectina 3/metabolismo , Galectina 3/farmacologia , Adrenérgicos/metabolismo , Adrenérgicos/farmacologia , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Arritmias Cardíacas , Fibrose , Inflamação/metabolismo
3.
PLoS One ; 16(3): e0248194, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33730102

RESUMO

Currently, the impact of changes in precipitation and increased nitrogen(N) deposition on ecosystems has become a global problem. In this study, we conducted a 8-year field experiment to evaluate the effects of interaction between N deposition and precipitation change on soil bacterial communities in a desert steppe using high-throughput sequencing technology. The results revealed that soil bacterial communities were sensitive to precipitation addition but were highly tolerant to precipitation reduction. Reduced precipitation enhanced the competitive interactions of soil bacteria and made the ecological network more stable. Nitrogen addition weakened the effect of water addition in terms of soil bacterial diversity and community stability, and did not have an interactive influence. Moreover, decreased precipitation and increased N deposition did not have a superimposed effect on soil bacterial communities in the desert steppe. Soil pH, moisture content, and NH4+-N and total carbon were significantly related to the structure of bacterial communities in the desert steppe. Based on network analysis and relative abundance, we identified Actinobacteria, Proteobacteria, Acidobacteria and Cyanobacteria members as the most important keystone bacteria that responded to precipitation changes and N deposition in the soil of the desert steppe. In summary, we comprehensively analyzed the responses of the soil bacterial community to precipitation changes and N deposition in a desert steppe, which provides a model for studying the effects of ecological factors on bacterial communities worldwide.


Assuntos
Clima Desértico , Ecossistema , Nitrogênio/análise , Chuva , Microbiologia do Solo , Solo/química , China
4.
Acta Pharmacol Sin ; 41(3): 311-318, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31530901

RESUMO

Acute sympathetic stress causes excessive secretion of catecholamines and induces cardiac injuries, which are mainly mediated by ß-adrenergic receptors (ß-ARs). However, α1-adrenergic receptors (α1-ARs) are also expressed in the heart and are activated upon acute sympathetic stress. In the present study, we investigated whether α1-AR activation induced cardiac inflammation and the underlying mechanisms. Male C57BL/6 mice were injected with a single dose of α1-AR agonist phenylephrine (PE, 5 or 10 mg/kg, s.c.) with or without pretreatment with α-AR antagonist prazosin (5 mg/kg, s.c.). PE injection caused cardiac dysfunction and cardiac inflammation, evidenced by the increased expression of inflammatory cytokine IL-6 and chemokines MCP-1 and MCP-5, as well as macrophage infiltration in myocardium. These effects were blocked by prazosin pretreatment. Furthermore, PE injection significantly increased the expression of NOD-like receptor protein 3 (NLRP3) and the cleavage of caspase-1 (p20) and interleukin-18 in the heart; similar results were observed in both Langendorff-perfused hearts and cultured cardiomyocytes following the treatment with PE (10 µM). Moreover, PE-induced NLRP3 inflammasome activation and cardiac inflammation was blocked in Nlrp3-/- mice compared with wild-type mice. In conclusion, α1-AR overactivation induces cardiac inflammation by activating NLRP3 inflammasomes.


Assuntos
Inflamassomos/metabolismo , Inflamação/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Relação Dose-Resposta a Droga , Ecocardiografia , Coração/efeitos dos fármacos , Inflamassomos/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estrutura Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Fenilefrina/farmacologia , Relação Estrutura-Atividade , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/patologia
5.
J Cardiovasc Transl Res ; 12(6): 528-538, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31161536

RESUMO

During acute sympathetic stress, the overactivation of ß-adrenergic receptors (ß-ARs) causes cardiac fibrosis by triggering inflammation and cytokine expression. It is unknown whether exercise training inhibits acute ß-AR overactivation-induced cytokine expression and cardiac injury. Here, we report that running exercise inhibited cardiac fibrosis and improved cardiac function in mice treated with isoproterenol (ISO), a ß-AR agonist. A cytokine antibody array revealed that running exercise prevented most of the changes in cytokine expression induced by ISO. Specifically, ISO-induced upregulation of 18 cytokines was prevented by running exercise. A Kyoto encyclopedia of genes and genomes analysis of these cytokines revealed that Hedgehog and RAP1 signaling pathways were involved in the regulation of cytokine expression by exercise. The changes in the expression of some cytokines that were prevented by exercise were verified by an enzyme-linked immunosorbent assay and real-time PCR. In conclusion, running exercise prevented the cytokine expression changes after acute ß-AR overactivation and therefore attenuated cardiac fibrosis. Acute sympathetic stress is an important risk factor for the patients with cardiovascular diseases, and the present study revealed that exercise training can prevent against the upregulation of cytokines and the subsequent cardiac injury induced by acute sympathetic stress, suggesting that exercise training may be beneficial for cardiovascular patients who are in risk of acute sympathetic stress. This finding provides a theoretical basis for the application of exercise training in patients who may suffer from acute sympathetic stress.


Assuntos
Citocinas/metabolismo , Terapia por Exercício , Cardiopatias/prevenção & controle , Coração/inervação , Isoproterenol , Miocárdio/metabolismo , Receptores Adrenérgicos beta/metabolismo , Sistema Nervoso Simpático/metabolismo , Animais , Citocinas/genética , Modelos Animais de Doenças , Fibrose , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Cardiopatias/patologia , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Corrida , Transdução de Sinais , Sistema Nervoso Simpático/fisiopatologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA