Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Front Microbiol ; 13: 1050352, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699605

RESUMO

Introduction: Prenatal and early postnatal development are known to influence future health. We previously reported that prenatal high estradiol (HE) exposure induces insulin resistance in male mice by disrupting hypothalamus development. Because a foster dam can modify a pup's gut microbiota and affect its health later in life, we explored whether surrogate fostering could also influence glucose metabolism in HE offspring and examined mechanisms that might be involved. Methods: We performed a surrogate fostering experiment in mice and examined the relationship between the metabolic markers associated to insulin resistance and the composition of the gut microbiota. Results: HE pups raised by HE foster dams (HE-HE) developed insulin resistance, but HE pups fostered by negative control dams (NC-HE) did not. The gut microbiota composition of HE-HE mice differed from that of NC mice raised by NC foster dams (NC-NC), whereas the composition in NC-HE mice was similar to that of NC-NC mice. Compared with NC-NC mice, HE-HE mice had decreased levels of fecal short-chain fatty acids and serum intestinal hormones, increased food intake, and increased hypothalamic neuropeptide Y expression. In contrast, none of these indices differed between NC-HE and NC-NC mice. Spearman correlation analysis revealed a significant correlation between the altered gut microbiota composition and the insulin resistance-related metabolic indicators, indicating involvement of the microbiota-gut-brain axis. Discussion: Our findings suggest that alterations in the early growth environment may prevent fetal-programmed glucose metabolic disorder via modulation of the microbiota-gut-brain axis. These findings offer direction for development of translational solutions for adult diseases associated with aberrant microbial communities in early life.

2.
J Exp Bot ; 71(19): 6004-6014, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32721017

RESUMO

The freshwater monocot Ottelia alismoides is the only known species to operate three CO2-concentrating mechanisms (CCMs): constitutive bicarbonate (HCO3-) use, C4 photosynthesis, and facultative Crassulacean acid metabolism, but the mechanism of HCO3- use is unknown. We found that the inhibitor of an anion exchange protein, 4,4'-diisothio-cyanatostilbene-2,2'-disulfonate (DIDS), prevented HCO3- use but also had a small effect on CO2 uptake. An inhibitor of external carbonic anhydrase (CA), acetazolamide (AZ), reduced the affinity for CO2 uptake but also prevented HCO3- use via an effect on the anion exchange protein. Analysis of mRNA transcripts identified a homologue of solute carrier 4 (SLC4) responsible for HCO3- transport, likely to be the target of DIDS, and a periplasmic α-carbonic anhydrase 1 (α-CA1). A model to quantify the contribution of the three different pathways involved in inorganic carbon uptake showed that passive CO2 diffusion dominates inorganic carbon uptake at high CO2 concentrations. However, as CO2 concentrations fall, two other pathways become predominant: conversion of HCO3- to CO2 at the plasmalemma by α-CA1 and transport of HCO3- across the plasmalemma by SLC4. These mechanisms allow access to a much larger proportion of the inorganic carbon pool and continued photosynthesis during periods of strong carbon depletion in productive ecosystems.


Assuntos
Anidrases Carbônicas , Magnoliopsida , Bicarbonatos , Dióxido de Carbono , Anidrases Carbônicas/genética , Ecossistema , Água Doce
3.
J Clin Invest ; 128(4): 1641-1656, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29553487

RESUMO

During development, Sox2 is indispensable for cell division and differentiation, yet its roles in regenerating tissues are less clear. Here, we used combinations of transgenic mouse models to reveal that Sox2 haploinsufficiency (Sox2haplo) increases rather than impairs cochlear regeneration in vivo. Sox2haplo cochleae had delayed terminal mitosis and ectopic sensory cells, yet normal auditory function. Sox2haplo amplified and expanded domains of damage-induced Atoh1+ transitional cell formation in neonatal cochlea. Wnt activation via ß-catenin stabilization (ß-cateninGOF) alone failed to induce proliferation or transitional cell formation. By contrast, ß-cateninGOF caused proliferation when either Sox2haplo or damage was present, and transitional cell formation when both were present in neonatal, but not mature, cochlea. Mechanistically, Sox2haplo or damaged neonatal cochleae showed lower levels of Sox2 and Hes5, but not of Wnt target genes. Together, our study unveils an interplay between Sox2 and damage in directing tissue regeneration and Wnt responsiveness and thus provides a foundation for potential combinatorial therapies aimed at stimulating mammalian cochlear regeneration to reverse hearing loss in humans.


Assuntos
Cóclea/fisiologia , Haploinsuficiência , Regeneração , Fatores de Transcrição SOXB1/metabolismo , Via de Sinalização Wnt , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Perda Auditiva/genética , Perda Auditiva/metabolismo , Perda Auditiva/patologia , Perda Auditiva/terapia , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição SOXB1/genética , Proteínas Wnt/genética
4.
Cell Tissue Res ; 364(1): 105-15, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26553654

RESUMO

Extensive studies have pinpointed the crucial role of Indian hedgehog (Ihh) signaling in the development of the appendicular skeleton and the essential function of Ihh in the formation of the temporomandibular joint (TMJ). In this study, we have investigated the effect of augmented Ihh signaling in TMJ development. We took a transgenic gain-of-function approach by overexpressing Ihh in the cranial neural crest (CNC) cells using a conditional Ihh transgenic allele and the Wnt1-Cre allele. We found that Wnt1-Cre-mediated tissue-specific overexpression of Ihh in the CNC lineage caused severe craniofacial abnormalities, including cleft lip/palate, encephalocele, anophthalmos, micrognathia, and defective TMJ development. In the mutant TMJ, the glenoid fossa was completely absent, whereas the condyle and the articular disc appeared relatively normal with slightly delayed chondrocyte differentiation. Our findings thus demonstrate that augmented Ihh signaling is detrimental to craniofacial development, and that finely tuned Ihh signaling is critical for TMJ formation. Our results also provide additional evidence that the development of the condyle and articular disc is independent of the glenoid fossa.


Assuntos
Anormalidades Craniofaciais/embriologia , Embrião de Mamíferos/embriologia , Proteínas Hedgehog/metabolismo , Crista Neural/metabolismo , Transdução de Sinais , Transtornos da Articulação Temporomandibular/embriologia , Animais , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia , Embrião de Mamíferos/patologia , Proteínas Hedgehog/genética , Camundongos , Camundongos Transgênicos , Crista Neural/patologia , Transtornos da Articulação Temporomandibular/genética , Transtornos da Articulação Temporomandibular/patologia
5.
PLoS One ; 10(9): e0136951, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26332583

RESUMO

In palatogenesis, palatal shelves are patterned along the mediolateral axis as well as the anteroposterior axis before the onset of palatal fusion. Fgf10 specifically expressed in lateral mesenchyme of palate maintains Shh transcription in lateral epithelium, while Fgf7 activated in medial mesenchyme by Dlx5, suppressed the expansion of Shh expression to medial epithelium. How FGF signaling pathways regulate the cell behaviors of developing palate remains elusive. In our study, we found that when Fgf8 is ectopically expressed in the embryonic palatal mesenchyme, the elevation of palatal shelves is impaired and the posterior palatal shelves are enlarged, especially in the medial side. The palatal deformity results from the drastic increase of cell proliferation in posterior mesenchyme and decrease of cell proliferation in epithelium. The expression of mesenchymal Fgf10 and epithelial Shh in the lateral palate, as well as the Dlx5 and Fgf7 transcription in the medial mesenchyme are all interrupted, indicating that the epithelial-mesenchymal interactions during palatogenesis are disrupted by the ectopic activation of mesenchymal Fgf8. Besides the altered Fgf7, Fgf10, Dlx5 and Shh expression pattern, the reduced Osr2 expression domain in the lateral mesenchyme also suggests an impaired mediolateral patterning of posterior palate. Moreover, the ectopic Fgf8 expression up-regulates pJak1 throughout the palatal mesenchyme and pErk in the medial mesenchyme, but down-regulates pJak2 in the epithelium, suggesting that during normal palatogenesis, the medial mesenchymal cell proliferation is stimulated by FGF/Erk pathway, while the epithelial cell proliferation is maintained through FGF/Jak2 pathway.


Assuntos
Proliferação de Células , Fissura Palatina/genética , Fator 8 de Crescimento de Fibroblasto/genética , Regulação da Expressão Gênica no Desenvolvimento , Palato/anormalidades , Palato/embriologia , Animais , Proteínas Hedgehog/genética , Camundongos , Palato/citologia , RNA não Traduzido/genética , Transdução de Sinais , Fatores de Transcrição/genética , Regulação para Cima
6.
J Mol Cell Biol ; 7(5): 441-54, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26243590

RESUMO

The cranial neural crest (CNC) cells play a vital role in craniofacial development and regeneration. They are multi-potent progenitors, being able to differentiate into various types of tissues. Both pre-migratory and post-migratory CNC cells are plastic, taking on diverse fates by responding to different inductive signals. However, what sustains the multipotency of CNC cells and derivatives remains largely unknown. In this study, we present evidence that FGF8 signaling is able to sustain progenitor status and multipotency of CNC-derived mesenchymal cells both in vivo and in vitro. We show that augmented FGF8 signaling in pre-migratory CNC cells prevents cell differentiation and organogenesis in the craniofacial region by maintaining their progenitor status. CNC-derived mesenchymal cells with Fgf8 overexpression or control cells in the presence of exogenous FGF8 exhibit prolonged survival, proliferation, and multi-potent differentiation capability in cell cultures. Remarkably, exogenous FGF8 also sustains the capability of CNC-derived mesenchymal cells to participate in organogenesis such as odontogenesis. Furthermore, FGF8-mediated signaling strongly promotes adipogenesis but inhibits osteogenesis of CNC-derived mesenchymal cells in vitro. Our results reveal a specific role for FGF8 in the maintenance of progenitor status and in fate determination of CNC cells, implicating a potential application in expansion and fate manipulation of CNC-derived cells in stem cell-based craniofacial regeneration.


Assuntos
Fator 8 de Crescimento de Fibroblasto/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Crista Neural/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Fator 8 de Crescimento de Fibroblasto/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genótipo , Humanos , Imuno-Histoquímica , Camundongos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
7.
J Biol Chem ; 290(4): 2007-23, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25488669

RESUMO

The atrioventricular (AV) junction plays a critical role in chamber septation and transmission of cardiac conduction pulses. It consists of structures that develop from embryonic dorsal mesenchymal protrusion (DMP) and the embryonic AV canal. Despite extensive studies on AV junction development, the genetic regulation of DMP development remains poorly understood. In this study we present evidence that Shox2 is expressed in the developing DMP. Intriguingly, this Shox2-expressing domain possesses a pacemaker-specific genetic profile including Hcn4 and Tbx3. This genetic profile leads to nodal-like electrophysiological properties, which is gradually silenced as the AV node becomes matured. Phenotypic analyses of Shox2(-/-) mice revealed a hypoplastic and defectively differentiated DMP, likely attributed to increased apoptosis, accompanied by dramatically reduced expression of Bmp4 and Hcn4, ectopic activation of Cx40, and an aberrant pattern of action potentials. Interestingly, conditional deletion of Bmp4 or inhibition of BMP signaling by overexpression of Noggin using a Shox2-Cre allele led to a similar DMP hypoplasia and down-regulation of Hcn4, whereas activation of a transgenic Bmp4 allele in Shox2(-/-) background attenuated DMP defects. Moreover, the lack of Hcn4 expression in the DMP of mice carrying Smad4 conditional deletion and direct binding of pSmad1/5/8 to the Hcn4 regulatory region further confirm the Shox2-BMP genetic cascade in the regulation of DMP development. Our results reveal that Shox2 regulates DMP fate and development by controlling BMP signaling through the Smad-dependent pathway to drive tissue growth and to induce Hcn4 expression and suggest a temporal pacemaking function for the DMP during early cardiogenesis.


Assuntos
Relógios Biológicos , Proteínas Morfogenéticas Ósseas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Proteínas de Homeodomínio/metabolismo , Potenciais de Ação , Alelos , Animais , Apoptose , Proteína Morfogenética Óssea 4/genética , Diferenciação Celular , Eletrofisiologia , Feminino , Septos Cardíacos/embriologia , Proteínas de Homeodomínio/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Mesoderma/metabolismo , Camundongos , Camundongos Transgênicos , Fenótipo , Transdução de Sinais
8.
PLoS One ; 9(8): e101000, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25093411

RESUMO

The central importance of BMP signaling in the development and homeostasis of synovial joint of appendicular skeleton has been well documented, but its role in the development of temporomandibular joint (TMJ), also classified as a synovial joint, remains completely unknown. In this study, we investigated the function of BMPRIA mediated signaling in TMJ development in mice by transgenic loss-of- and gain-of-function approaches. We found that BMPRIA is expressed in the cranial neural crest (CNC)-derived developing condyle and glenoid fossa, major components of TMJ, as well as the interzone mesenchymal cells. Wnt1-Cre mediated tissue specific inactivation of BmprIa in CNC lineage led to defective TMJ development, including failure of articular disc separation from a hypoplastic condyle, persistence of interzone cells, and failed formation of a functional fibrocartilage layer on the articular surface of the glenoid fossa and condyle, which could be at least partially attributed to the down-regulation of Ihh in the developing condyle and inhibition of apoptosis in the interzone. On the other hand, augmented BMPRIA signaling by Wnt1-Cre driven expression of a constitutively active form of BmprIa (caBmprIa) inhibited osteogenesis of the glenoid fossa and converted the condylar primordium from secondary cartilage to primary cartilage associated with ectopic activation of Smad-dependent pathway but inhibition of JNK pathway, leading to TMJ agenesis. Our results present unambiguous evidence for an essential role of finely tuned BMPRIA mediated signaling in TMJ development.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/fisiologia , Articulação Temporomandibular/embriologia , Animais , Padronização Corporal/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Condrócitos/fisiologia , Condrogênese/genética , Embrião de Mamíferos , Feminino , Camundongos , Camundongos Transgênicos , Crista Neural/embriologia , Crista Neural/metabolismo , Gravidez , Transdução de Sinais/genética
9.
Dev Biol ; 391(2): 170-81, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24785830

RESUMO

Congenital bony syngnathia, a rare but severe human birth defect, is characterized by bony fusion of the mandible to the maxilla. However, the genetic mechanisms underlying this birth defect are poorly understood, largely due to limitation of available animal models. Here we present evidence that transgenic expression of Bmp4 in neural crest cells causes a series of craniofacial malformations in mice, including a bony fusion between the maxilla and hypoplastic mandible, resembling the bony syngnathia syndrome in humans. In addition, the anterior portion of the palatal shelves emerged from the mandibular arch instead of the maxilla in the mutants. Gene expression assays showed an altered expression of several facial patterning genes, including Hand2, Dlx2, Msx1, Barx1, Foxc2 and Fgf8, in the maxillary and mandibular processes of the mutants, indicating mis-patterned cranial neural crest (CNC) derived cells in the facial region. However, despite of formation of cleft palate and ectopic cartilage, forced expression of a constitutively active form of BMP receptor-Ia (caBmprIa) in CNC lineage did not produce the syngnathia phenotype, suggesting a non-cell autonomous effect of the augmented BMP4 signaling. Our studies demonstrate that aberrant BMP4-mediated signaling in CNC cells leads to mis-patterned facial skeleton and congenital bony syngnathia, and suggest an implication of mutations in BMP signaling pathway in human bony syngnathia.


Assuntos
Proteína Morfogenética Óssea 4/genética , Anormalidades Maxilomandibulares/genética , Mandíbula/anormalidades , Maxila/anormalidades , Modelos Genéticos , Animais , Proteína Morfogenética Óssea 4/biossíntese , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/biossíntese , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Fissura Palatina/embriologia , Fissura Palatina/genética , Ossos Faciais/anormalidades , Ossos Faciais/embriologia , Ossos Faciais/crescimento & desenvolvimento , Humanos , Mandíbula/embriologia , Maxila/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Crista Neural/citologia , Crista Neural/metabolismo , Transdução de Sinais/genética , Proteína Wnt1/genética
10.
Cell Tissue Res ; 355(2): 345-54, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24248941

RESUMO

The temporomandibular joint (TMJ) consists in the glenoid fossa arising from the otic capsule through intramembranous ossification, the fibrocartilaginous disc and the condyle, which is derived from the secondary cartilage by endochondral ossification. We have reported previously that cranial neural-crest-specific inactivation of the homeobox gene Shox2, which is expressed in the mesenchymal cells of the maxilla-mandibular junction and later in the progenitor cells and perichondrium of the developing chondyle, leads to dysplasia and ankylosis of the TMJ and that replacement of the mouse Shox2 with the human SHOX gene rescues the dysplastic and ankylosis phenotypes but results in a prematurely worn out articular disc. In this study, we investigate the molecular and cellular bases for the prematurely worn out articular disc in the TMJ of mice carrying the human SHOX replacement allele in the Shox2 locus (termed Shox2 (SHOX-KI/KI)). We find that the developmental process and expression of several key genes in the TMJ of Shox2 (SHOX-KI/KI) mice are similar to that of controls. However, the disc of the Shox2 (SHOX-KI/KI) TMJ exhibits a reduced level of Collagen I and Aggrecan, accompanied by increased activities of matrix metalloproteinases and a down-regulation of Ihh expression. Dramatically increased cell apoptosis in the disc was also observed. These combinatory cellular and molecular defects appear to contribute to the observed disc phenotype, suggesting that, although human SHOX can exert similar functions to mouse Shox2 in regulating early TMJ development, it apparently has a distinct function in the regulation of those molecules that are involved in tissue homeostasis.


Assuntos
Proteínas de Homeodomínio/metabolismo , Luxações Articulares/congênito , Disco da Articulação Temporomandibular/patologia , Animais , Animais Recém-Nascidos , Apoptose , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Metaloproteinases da Matriz/metabolismo , Camundongos , Fatores de Transcrição SOX9/metabolismo , Proteína de Homoeobox de Baixa Estatura , Disco da Articulação Temporomandibular/enzimologia
11.
Development ; 140(21): 4375-85, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24067353

RESUMO

Odontoblasts and osteoblasts develop from multipotent craniofacial neural crest cells during tooth and jawbone development, but the mechanisms that specify and sustain their respective fates remain largely unknown. In this study we used early mouse molar and incisor tooth germs that possess distinct tooth-forming capability after dissociation and reaggregation in vitro to investigate the mechanism that sustains odontogenic fate of dental mesenchyme during tooth development. We found that after dissociation and reaggregation, incisor, but not molar, mesenchyme exhibits a strong osteogenic potency associated with robustly elevated ß-catenin signaling activity in a cell-autonomous manner, leading to failed tooth formation in the reaggregates. Application of FGF3 to incisor reaggregates inhibits ß-catenin signaling activity and rescues tooth formation. The lack of FGF retention on the cell surface of incisor mesenchyme appears to account for the differential osteogenic potency between incisor and molar, which can be further attributed to the differential expression of syndecan 1 and NDST genes. We further demonstrate that FGF signaling inhibits intracellular ß-catenin signaling by activating the PI3K/Akt pathway to regulate the subcellular localization of active GSK3ß in dental mesenchymal cells. Our results reveal a novel function for FGF signaling in ensuring the proper fate of dental mesenchyme by regulating ß-catenin signaling activity during tooth development.


Assuntos
Diferenciação Celular/fisiologia , Fator 3 de Crescimento de Fibroblastos/metabolismo , Mesoderma/embriologia , Odontogênese/fisiologia , Transdução de Sinais/fisiologia , Dente/embriologia , Animais , Fator 3 de Crescimento de Fibroblastos/farmacologia , Galactosídeos , Immunoblotting , Imuno-Histoquímica , Hibridização In Situ , Indóis , Mesoderma/citologia , Camundongos , Microesferas , Crista Neural/citologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , beta Catenina/metabolismo
12.
Genesis ; 51(7): 515-22, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23620086

RESUMO

Shox2 is expressed in several developing organs in a tissue specific manner in both mice and humans, including the heart, palate, limb, and nervous system. To better understand the spatial and temporal expression patterns of Shox2 and to systematically dissect the genetic cascade regulated by Shox2, we created Shox2-LacZ and Shox2-Cre knock-in mouse lines. We show that the Shox2-LacZ allele expresses beta-galactosidase reporter gene in a fashion that recapitulates the endogenous Shox2 expression pattern in developing organs, including the sinoatrial node (SAN), the anterior portion of the palate, and the proximal region of the limb bud. Conditional deletion of Shox2 in mice carrying the Shox2-Cre allele yielded SAN phenotypes that resemble conventional Shox2 knockout mice. Our results indicate that the Shox2-Cre allele offer a useful tool for tissue specific manipulation of genes in a number of developing organs, particularly in the developing SAN.


Assuntos
Proteínas de Homeodomínio/genética , Botões de Extremidades/metabolismo , Palato/metabolismo , Nó Sinoatrial/metabolismo , Alelos , Animais , Regulação da Expressão Gênica no Desenvolvimento , Marcação de Genes , Genes Reporter , Coração/embriologia , Proteínas de Homeodomínio/metabolismo , Integrases/genética , Integrases/metabolismo , Botões de Extremidades/embriologia , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos , Palato/embriologia , Nó Sinoatrial/embriologia , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
13.
J Biol Chem ; 288(15): 10440-50, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23460641

RESUMO

Cleft palate represents one of the most common congenital birth defects in humans. TGFß signaling, which is mediated by Smad-dependent and Smad-independent pathways, plays a crucial role in regulating craniofacial development and patterning, particularly in palate development. However, it remains largely unknown whether the Smad-independent pathway contributes to TGFß signaling function during palatogenesis. In this study, we investigated the function of TGFß activated kinase 1 (Tak1), a key regulator of Smad-independent TGFß signaling in palate development. We show that Tak1 protein is expressed in both the epithelium and mesenchyme of the developing palatal shelves. Whereas deletion of Tak1 in the palatal epithelium or mesenchyme did not give rise to a cleft palate defect, inactivation of Tak1 in the neural crest lineage using the Wnt1-Cre transgenic allele resulted in failed palate elevation and subsequently the cleft palate formation. The failure in palate elevation in Wnt1-Cre;Tak1(F/F) mice results from a malformed tongue and micrognathia, resembling human Pierre Robin sequence cleft of the secondary palate. We found that the abnormal tongue development is associated with Fgf10 overexpression in the neural crest-derived tongue tissue. The failed palate elevation and cleft palate were recapitulated in an Fgf10-overexpressing mouse model. The repressive effect of the Tak1-mediated noncanonical TGFß signaling on Fgf10 expression was further confirmed by inhibition of p38, a downstream kinase of Tak1, in the primary cell culture of developing tongue. Tak1 thus functions to regulate tongue development by controlling Fgf10 expression and could represent a candidate gene for mutation in human PRS clefting.


Assuntos
Linhagem da Célula , Fissura Palatina/embriologia , Embrião de Mamíferos/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Crista Neural/embriologia , Língua/anormalidades , Língua/embriologia , Animais , Fissura Palatina/genética , Fissura Palatina/patologia , Modelos Animais de Doenças , Embrião de Mamíferos/patologia , Fator 10 de Crescimento de Fibroblastos/biossíntese , Fator 10 de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , MAP Quinase Quinase Quinases/genética , Camundongos , Camundongos Mutantes , Crista Neural/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Neurobiol Dis ; 47(2): 163-73, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22521462

RESUMO

The small heat shock protein HSPB1 is a multifunctional, α-crystallin-based protein that has been shown to be neuroprotective in animal models of motor neuron disease and peripheral nerve injury. Missense mutations in HSPB1 result in axonal Charcot-Marie-Tooth disease with minimal sensory involvement (CMT2F) and distal hereditary motor neuropathy type 2 (dHMN-II). These disorders are characterized by a selective loss of motor axons in peripheral nerve resulting in distal muscle weakness and often severe disability. To investigate the pathogenic mechanisms of HSPB1 mutations in motor neurons in vivo, we have developed and characterized transgenic PrP-HSPB1 and PrP-HSPB1(R136W) mice. These mice express the human HSPB1 protein throughout the nervous system including in axons of peripheral nerve. Although both mouse strains lacked obvious motor deficits, the PrP-HSPB1(R136W) mice developed an age-dependent motor axonopathy. Mutant mice showed axonal pathology in spinal cord and peripheral nerve with evidence of impaired neurofilament cytoskeleton, associated with organelle accumulation. Accompanying these findings, increases in the number of Schmidt-Lanterman incisures, as evidence of impaired axon-Schwann cell interactions, were present. These observations suggest that overexpression of HSPB1(R136W) in neurons is sufficient to cause pathological and electrophysiological changes in mice that are seen in patients with hereditary motor neuropathy.


Assuntos
Envelhecimento/metabolismo , Doença de Charcot-Marie-Tooth/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP27/genética , Neurônios Motores/metabolismo , Mutação/fisiologia , Envelhecimento/patologia , Animais , Axônios/patologia , Doença de Charcot-Marie-Tooth/patologia , Proteínas de Choque Térmico HSP27/biossíntese , Proteínas de Choque Térmico , Humanos , Camundongos , Camundongos Transgênicos , Chaperonas Moleculares , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/patologia , Neurônios Motores/patologia , Distribuição Aleatória
15.
Dev Dyn ; 240(11): 2466-73, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21953591

RESUMO

The mammalian temporomandibular joint (TMJ) develops from two distinct mesenchymal condensations that grow toward each other and ossify through different mechanisms, with the glenoid fossa undergoing intramembranous ossification while the condyle being endochondral in origin. In this study, we used various genetically modified mouse models to investigate tissue interaction between the condyle and glenoid fossa during TMJ formation in mice. We report that either absence or dislocation of the condyle results in an arrested glenoid fossa development. In both cases, glenoid fossa development was initiated, but failed to sustain, and became regressed subsequently. However, condyle development appears to be independent upon the presence of the forming glenoid fossa. In addition, we show that substitution of condyle by Meckel's cartilage is able to sustain glenoid fossa development. These observations suggest that proper signals from the developing condyle or Meckel's cartilage are required to sustain the glenoid fossa development.


Assuntos
Comunicação Celular/fisiologia , Cavidade Glenoide/embriologia , Côndilo Mandibular/embriologia , Articulação Temporomandibular/embriologia , Animais , Cartilagem/anormalidades , Cartilagem/embriologia , Cartilagem/metabolismo , Cartilagem/patologia , Comunicação Celular/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Anormalidades Craniofaciais/genética , Embrião de Mamíferos , Inativação Gênica , Cavidade Glenoide/crescimento & desenvolvimento , Côndilo Mandibular/crescimento & desenvolvimento , Camundongos , Camundongos Transgênicos , Crista Neural/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Articulação Temporomandibular/crescimento & desenvolvimento
16.
Development ; 135(23): 3871-9, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18948417

RESUMO

Tissue and molecular heterogeneities are present in the developing secondary palate along the anteroposterior (AP) axis in mice. Here, we show that Wnt5a and its receptor Ror2 are expressed in a graded manner along the AP axis of the palate. Wnt5a deficiency leads to a complete cleft of the secondary palate, which exhibits distinct phenotypic alterations at histological, cellular and molecular levels in the anterior and posterior regions of the palate. We demonstrate that there is directional cell migration within the developing palate. In the absence of Wnt5a, this directional cell migration does not occur. Genetic studies and in vitro organ culture assays further demonstrate a role for Ror2 in mediating Wnt5a signaling in the regulation of cell proliferation and migration during palate development. Our results reveal distinct regulatory roles for Wnt5a in gene expression and cell proliferation along the AP axis of the developing palate, and an essential role for Wnt5a in the regulation of directional cell migration.


Assuntos
Movimento Celular , Mamíferos/embriologia , Palato/citologia , Palato/embriologia , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Wnt/metabolismo , Animais , Padronização Corporal , Bromodesoxiuridina/metabolismo , Proliferação de Células , Quimiotaxia , Fissura Palatina/enzimologia , Fissura Palatina/patologia , Epistasia Genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Mesoderma/enzimologia , Mesoderma/patologia , Camundongos , Camundongos Mutantes , Palato/enzimologia , Palato/metabolismo , Fenótipo , Receptores Proteína Tirosina Quinases/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Proteínas Wnt/deficiência , Proteínas Wnt/genética , Proteína Wnt-5a
17.
Mech Dev ; 125(8): 729-42, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18514492

RESUMO

The temporomandibular joint (TMJ) is a unique synovial joint whose development differs from the formation of other synovial joints. Mutations have been associated with the developmental defects of the TMJ only in a few genes. In this study, we report the expression of the homeobox gene Shox2 in the cranial neural crest derived mesenchymal cells of the maxilla-mandibular junction and later in the progenitor cells and undifferentiated chondrocytes of the condyle as well as the glenoid fossa of the developing TMJ. A conditional inactivation of Shox2 in the cranial neural crest-derived cells causes developmental abnormalities in the TMJ, including dysplasia of the condyle and glenoid fossa. The articulating disc forms but fuses with the fibrous layers of the condyle and glenoid fossa, clinically known as TMJ ankylosis. Histological examination indicates a delay in development in the mutant TMJ, accompanied by a significantly reduced rate of cell proliferation. In situ hybridization further demonstrates an altered expression of several key osteogenic genes and a delayed expression of the osteogenic differentiation markers. Shox2 appears to regulate the expression of osteogenic genes and is essential for the development and function of the TMJ. The Shox2 conditional mutant thus provides a unique animal model of TMJ ankylosis.


Assuntos
Anquilose/metabolismo , Doenças do Desenvolvimento Ósseo/metabolismo , Proteínas de Homeodomínio/biossíntese , Articulações/anormalidades , Côndilo Mandibular/anormalidades , Células-Tronco Mesenquimais/metabolismo , Osso Temporal/anormalidades , Animais , Anquilose/patologia , Doenças do Desenvolvimento Ósseo/patologia , Diferenciação Celular , Condrócitos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Articulações/embriologia , Articulações/metabolismo , Côndilo Mandibular/embriologia , Côndilo Mandibular/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Knockout , Crista Neural/citologia , Osteogênese , Osso Temporal/embriologia , Osso Temporal/metabolismo
18.
Dev Dyn ; 237(5): 1509-16, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18393307

RESUMO

Many genes are known to function in a region-specific manner in the developing secondary palate. We have previously shown that Shox2-deficient embryos die at mid-gestation stage and develop an anterior clefting phenotype. Here, we show that mice carrying a conditional inactivation of Shox2 in the palatal mesenchyme survive the embryonic and neonatal lethality, but develop a wasting syndrome. Phenotypic analyses indicate a delayed closure of the secondary palate at the anterior end, leading to a failed fusion of the primary and secondary palates. Consistent with a role proposed for Shox2 in skeletogenesis, Shox2 inactivation causes a significantly reduced bone formation in the hard palate, probably due to a down-regulation of Runx2 and Osterix. We conclude that the secondary palatal shelves are capable of fusion with each other, but fail to fuse with the primary palate in a developmentally delayed manner. Mice carrying an anterior cleft can survive neonatal lethality.


Assuntos
Fissura Palatina , Proteínas de Homeodomínio/metabolismo , Palato/anatomia & histologia , Palato/embriologia , Animais , Fissura Palatina/genética , Fissura Palatina/mortalidade , Fator 10 de Crescimento de Fibroblastos/genética , Fator 10 de Crescimento de Fibroblastos/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Hibridização In Situ , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Osteogênese/fisiologia , Palato/anormalidades , Fenótipo , Fatores de Transcrição SOX9 , Taxa de Sobrevida , Técnicas de Cultura de Tecidos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Dev Dyn ; 236(5): 1307-12, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17394220

RESUMO

In the developing murine tooth, the expression patterns of numerous regulatory genes have been examined and their roles have begun to be revealed. To unveil the molecular mechanisms that regulate human tooth morphogenesis, we examined the expression patterns of several regulatory genes, including BMP4, FGF8, MSX1, PAX9, PITX2, and SHOX2, and compared them with that found in mice. All of these genes are known to play critical roles in murine tooth development. Our results show that these genes exhibit basically similar expression patterns in the human tooth germ compared with that in the mouse. However, slightly different expression patterns were also observed for some of the genes at certain stages. For example, MSX1 expression was detected in the inner enamel epithelium in addition to the dental mesenchyme at the bell stage of the human tooth. Moreover, FGF8 expression remained in the dental epithelium at the cap stage, while PAX9 and SHOX2 expression was detected in both dental epithelium and mesenchyme of the human tooth germ. Our results indicate that, although slight differences exist in the gene expression patterns, the human and mouse teeth not only share considerable homology in odontogenesis but also use similar underlying molecular networks.


Assuntos
Odontogênese/genética , Germe de Dente/embriologia , Animais , Sequência de Bases , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/genética , Primers do DNA/genética , Fator 8 de Crescimento de Fibroblasto/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Humanos , Hibridização In Situ , Fator de Transcrição MSX1/genética , Camundongos , Fator de Transcrição PAX9/genética , Especificidade da Espécie , Fatores de Transcrição/genética , Proteína Homeobox PITX2
20.
Dev Dyn ; 236(3): 853-61, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17266133

RESUMO

Polycomb group (PcG) proteins are required for maintaining the repressed state of developmentally important genes such as homeotic genes. Polycomblike (Pcl), a member of PcG genes with two characteristic PHD finger motifs, was shown to strongly enhance the effects of PcG genes in Drosophila. Three Pcl genes exist in the mouse genome, with their function largely unknown. Our previous studies demonstrate that the chick Pcl2 is essential for the left-right asymmetry by silencing Shh expression in the right side of the node (Wang et al., [2004b] Development 131:4381-4391). To elucidate the in vivo role of mouse Pcl2, we generated Pcl2 mutant mice. Phenotypic analyses indicate the normal development of left-right asymmetry in the Pcl2 mutant mice. However, Pcl2 mutant mice exhibit posterior transformation of axial skeletons and other phenotypic defects, with a relatively low penetrance. These results demonstrate that Pcl2 is dispensable for the normal left-right axis development in mice.


Assuntos
Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Repressoras/genética , Animais , Northern Blotting , Padronização Corporal/fisiologia , Linhagem Celular , Feminino , Imuno-Histoquímica , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Complexo Repressor Polycomb 2 , Proteínas Repressoras/metabolismo , Proteínas Repressoras/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA