Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Mol Plant Pathol ; 25(6): e13468, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38808392

RESUMO

Phytophthora pathogens possess hundreds of effector genes that exhibit diverse expression patterns during infection, yet how the expression of effector genes is precisely regulated remains largely elusive. Previous studies have identified a few potential conserved transcription factor binding sites (TFBSs) in the promoters of Phytophthora effector genes. Here, we report a MYB-related protein, PsMyb37, in Phytophthora sojae, the major causal agent of root and stem rot in soybean. Yeast one-hybrid and electrophoretic mobility shift assays showed that PsMyb37 binds to the TACATGTA motif, the most prevalent TFBS in effector gene promoters. The knockout mutant of PsMyb37 exhibited significantly reduced virulence on soybean and was more sensitive to oxidative stress. Consistently, transcriptome analysis showed that numerous effector genes associated with suppressing plant immunity or scavenging reactive oxygen species were down-regulated in the PsMyb37 knockout mutant during infection compared to the wild-type P. sojae. Several promoters of effector genes were confirmed to drive the expression of luciferase in a reporter assay. These results demonstrate that a MYB-related transcription factor contributes to the expression of effector genes in P. sojae.


Assuntos
Phytophthora , Doenças das Plantas , Regiões Promotoras Genéticas , Fatores de Transcrição , Phytophthora/patogenicidade , Phytophthora/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regiões Promotoras Genéticas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Glycine max/microbiologia , Glycine max/genética , Virulência/genética
2.
Cell Death Discov ; 10(1): 242, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773098

RESUMO

Abnormal activation of ferroptosis worsens the severity of acute pancreatitis and intensifies the inflammatory response and organ damage, but the detailed underlying mechanisms are unknown. Compared with other types of pancreatitis, hyperlipidemic acute pancreatitis (HLAP) is more likely to progress to necrotizing pancreatitis, possibly due to peripancreatic lipolysis and the production of unsaturated fatty acids. Moreover, high levels of unsaturated fatty acids undergo lipid peroxidation and trigger ferroptosis to further exacerbate inflammation and worsen HLAP. This paper focuses on the malignant development of hyperlipidemic pancreatitis with severe disease combined with the core features of ferroptosis to explore and describe the mechanism of this phenomenon and shows that the activation of lipid peroxidation and the aberrant intracellular release of many inflammatory mediators during ferroptosis are the key processes that regulate the degree of disease development in patients with HLAP. Inhibiting the activation of ferroptosis effectively reduces the intensity of the inflammatory response, thus reducing organ damage in patients and preventing the risk of HLAP exacerbation. Additionally, this paper summarizes the key targets and potential therapeutic agents of ferroptosis associated with HLAP deterioration to provide new ideas for future clinical applications.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38795294

RESUMO

Arsenic (As) is one extremely hazardous and carcinogenic metalloid element. Due to mining, metal smelting, and other human activities, the pollution of water (especially groundwater) and soil caused by As is increasingly serious, which badly threatens the environment and human health. In this study, a zeolite imidazolate framework (ZIF-8) was synthesized at room temperature and employed as an adsorbent to facilitate the adsorption of As(III) and As(V) from the solution. The successful synthesis of ZIF-8 was demonstrated by X-ray diffraction (XRD), and scanning electron microscopy (SEM) revealed that its particle size was approximately 80 nm. The adsorption kinetics, adsorption isotherm, solution pH, dose, coexisting ions, and the synonymous elements antimony (Sb) were conducted to study the adsorption of As by ZIF-8 nanoparticles. The maximum saturation adsorption capacity was determined to be 101.47 mg/g and 81.40 mg/g for As(III), and As(V) at initial pH = 7.0, respectively. Apparently, ZIF-8 had a good removal effect on As, and it still maintained a good performance after four cycles. The coexisting ions PO43- and CO32- inhibited the adsorption of both As(III) and As(V). ZIF-8 performed well in removing both As and Sb simultaneously, although the presence of Sb hindered the adsorption of both As(III) and As(V). Both FTIR and XPS indicated the adsorption mechanism of As on ZIF-8: ZIF-8 generates a large amount of Zn-OH on the surface through hydrolysis and partial fracture of Zn-N, both of which form surface complexes with As.

4.
Front Cell Infect Microbiol ; 14: 1342684, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533384

RESUMO

Brucella consists of gram-negative bacteria that have the ability to invade and replicate in professional and non-professional phagocytes, and its prolonged persistence in the host leads to brucellosis, a serious zoonosis. Toll-like receptors (TLRs) are the best-known sensors of microorganisms implicated in the regulation of innate and adaptive immunity. In particular, TLRs are transmembrane proteins with a typical structure of an extracellular leucine-rich repeat (LRR) region and an intracellular Toll/interleukin-1 receptor (TIR) domain. In this review, we discuss Brucella infection and the aspects of host immune responses induced by pathogens. Furthermore, we summarize the roles of TLRs in Brucella infection, with substantial emphasis on the molecular insights into its mechanisms of action.


Assuntos
Brucella , Brucelose , Humanos , Receptores Toll-Like , Imunidade Inata
5.
Neuron ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38537642

RESUMO

A postulated role of subcortical neuromodulators is to control brain states. Mechanisms by which different neuromodulators compete or cooperate at various temporal scales remain an open question. We investigated the interaction of acetylcholine (ACh) and oxytocin (OXT) at slow and fast timescales during various brain states. Although these neuromodulators fluctuated in parallel during NREM packets, transitions from NREM to REM were characterized by a surge of ACh but a continued decrease of OXT. OXT signaling lagged behind ACh. High ACh was correlated with population synchrony and gamma oscillations during active waking, whereas minimum ACh predicts sharp-wave ripples (SPW-Rs). Optogenetic control of ACh and OXT neurons confirmed the active role of these neuromodulators in the observed correlations. Synchronous hippocampal activity consistently reduced OXT activity, whereas inactivation of the lateral septum-hypothalamus path attenuated this effect. Our findings demonstrate how cooperative actions of these neuromodulators allow target circuits to perform specific functions.

6.
Adv Mater ; : e2400245, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377331

RESUMO

The construction of high-quality carbon-based energy materials through biotechnology has always been an eager goal of the scientific community. Herein, juice vesicles bioreactors (JVBs) bio-technology based on hesperidium (e.g., pomelo, waxberry, oranges) is first reported for preparation of carbon-based composites with controllable components, adjustable morphologies, and sizes. JVBs serve as miniature reaction vessels that enable sophisticated confined chemical reactions to take place, ultimately resulting in the formations of complex carbon composites. The newly developed approach is highly versatile and can be compatible with a wide range of materials including metals, alloys, and metal compounds. The growth and self-assembly mechanisms of carbon composites via JVBs are explained. For illustration, NiCo alloy nanoparticles are successfully in situ implanted into pomelo vesicles crosslinked carbon (PCC) by JVBs, and their applications as sulfur/carbon cathodes for lithium-sulfur batteries are explored. The well-designed PCC/NiCo-S electrode exhibits superior high-rate properties and enhanced long-term stability. Synergistic reinforcement mechanisms on transportation of ions/electrons of interface reactions and catalytic conversion of lithium polysulfides arising from metal alloy and carbon architecture are proposed with the aid of DFT calculations. The research provides a novel biosynthetic route to rational design and fabrication of carbon composites for advanced energy storage.

7.
Mol Neurobiol ; 61(3): 1467-1478, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37725213

RESUMO

In fractures, pain signals are transmitted from the dorsal root ganglion (DRG) to the brain, and the DRG generates efferent signals to the injured bone to participate in the injury response. However, little is known about how this process occurs. We analyzed DRG transcriptome at 3, 7, 14, and 28 days after fracture. We identified the key pathways through KEGG and GO enrichment analysis. We then used IPA analysis to obtain upstream regulators and disease pathways. Finally, we compared the sequencing results with those of nerve injury to identify the unique transcriptome changes in DRG after fracture. We found that the first 14 days after fracture were the main repair response period, the 3rd day was the peak of repair activity, the 14th day was dominated by the stimulus response, and on the 28th day, the repair response had reached a plateau. ECM-receptor interaction, protein digestion and absorption, and the PI3K-Akt signaling pathway were most significantly enriched, which may be involved in repair regeneration, injury response, and pain transmission. Compared with the nerve injury model, DRG after fracture produced specific alterations related to bone repair, and the bone density function was the most widely activated bone-related function. Our results obtained some important genes and pathways in DRG after fracture, and we also summarized the main features of transcriptome function at each time point through functional annotation clustering of GO pathway, which gave us a deeper understanding of the role played by DRG in fracture.


Assuntos
Gânglios Espinais , Fosfatidilinositol 3-Quinases , Ratos , Animais , Ratos Sprague-Dawley , Gânglios Espinais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Perfilação da Expressão Gênica , Dor/metabolismo
9.
Chemosphere ; 344: 140376, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37806327

RESUMO

In this study, we demonstrated the effective degradation of wide-spectrum antibiotic chloramphenicol (CAP) by Fe3O4/peroxymonosulfate (PMS) system modified by gallic acid (GA). GA/Fe3O4/PMS showed a substantially higher degradation rate (77.6%) than Fe3O4/PMS (8.3%). The active components were detected by electron spin-resonance spectroscopy (ESR) and the quenching experiments. The results showed that the hydroxyl radical (HO•) was the main reason for the degradation of CAP. In the GA/Fe3O4/PMS system, the trace amount of dissolved iron ion were not the main species that activated PMS. Surface characterization and theoretical simulations showed that Fe atoms on Fe3O4 were responsible for PMS activation rather than a homogenous reaction. Five probable CAP degradation pathways were identified by density functional theory (DFT) calculations and liquid-phase mass spectrometry. Finally, the reusability of Fe3O4 was measured, and the GA/Fe3O4/PMS system maintained high efficiency after 5 times applications. The total organic carbon (TOC) removal rate reached 46.5% after reacting for 12 h. The gallic acid effectively promotes the circulation of Fe(II)/Fe(III) on solid surfaces and enhanced the degradation capacity of the original system. The research proposed a new way of directly employing plant polyphenols to boost the degradation ability of contaminants in heterogeneous systems.


Assuntos
Cloranfenicol , Compostos Férricos , Peróxidos/química , Ferro
10.
Inorg Chem ; 62(41): 16919-16931, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37792966

RESUMO

Bismuth vanadate is a promising material for photoelectrochemical water oxidation. However, it suffers from a low quantum efficiency, poor stability, and slow water oxidation kinetics. Here, we developed a novel photoanode of CoS/Mo-BiVO4 with excellent photoelectrochemical water oxidation performance. It achieved a photocurrent density of 4.5 mA cm-2 at 1.23 V versus the reversible hydrogen electrode, ∼4 times that of BiVO4. The CoS/Mo-BiVO4 photoanode also exhibited good stability, and the photocurrent density generated by the CoS/Mo-BiVO4 photoanode did not significantly decrease after light irradiation for 2 h. Upon replacement of part of the V with Mo doping in BiVO4, the local electric field around the Mo-O bond was enhanced, thus promoting carrier separation in BiVO4. The CoS was deposited on the surface of Mo-BiVO4, forming a built-in electric field at the interface. Under the action of the bias electric field and the built-in electric field, the carriers of CoS/Mo-BiVO4 were efficiently separated in the direction of the inverse type II heterojunction. In addition, CoS improved the light absorption and charge injection efficiency of the CoS/Mo-BiVO4 photoanode.

11.
Appl Opt ; 62(15): 3874-3879, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37706696

RESUMO

Woodwind instrument reeds are commonly made from Arundo donax Linn (ADL) material. The mechanical properties of ADL significantly influence the acoustic behavior of the reed, thereby affecting the instrument's overall performance. Current investigations into the internal microstructure of reeds are primarily conducted through optical microscopy, a method that involves cutting open the sample and observing its morphological features, thereby causing irreversible damage to the specimen. To address this issue, we employed optical coherence tomography (OCT) to examine the interior microstructure of reeds in both two and three dimensions, thus providing a non-invasive and real-time technique for characterizing reeds. The optical data gathered through backscattering is used to reveal microstructural variations and determine the reed's lifespan. Our findings indicate that, with increasing degrees of vibratory load excitation, the microstructure of the vessel wall degrades while the width of the vessel lumen appears to expand. Over extended periods of usage, the backscattered signal intensity of the parenchymal tissue diminishes. Additionally, the 3D imaging capabilities of OCT can be employed to rapidly establish the spatial volume of defects within the reed. In light of these results, optical coherence tomography shows its promise as a powerful, real-time, and noninvasive technique for the identification of reeds.


Assuntos
Acústica , Tomografia de Coerência Óptica , Imageamento Tridimensional , Microscopia , Vibração
12.
Plants (Basel) ; 12(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37653858

RESUMO

Ilex verticillata is not only an excellent ornamental tree species for courtyards, but it is also a popular bonsai tree. 'Oosterwijk' and 'Red sprite' are two varieties of Ilex verticillata. The former has a long stem with few branches, while the latter has a short stem. In order to explain the stem growth differences between the two cultivars 'Oosterwijk' and 'Red sprite', determination of the microstructure, transcriptome sequence and IAA content was carried out. The results showed that the xylem thickness, vessel area and vessel number of 'Oosterwijk' were larger than in 'Red sprite'. In addition, our analysis revealed that the differentially expressed genes which were enriched in phenylpropanoid biosynthesis; phenylalanine metabolism and phenylalanine, tyrosine and tryptophan biosynthesis in the black and tan modules of the two varieties. We found that AST, HCT and bHLH 94 may be key genes in the formation of shoot difference. Moreover, we found that the IAA content and auxin-related DEGs GH3.6, GH3, ATRP5, IAA27, SAUR36-like, GH3.6-like and AIP 10A5-like may play important roles in the formation of shoot differences. In summary, these results indicated that stem growth variations of 'Oosterwijk' and 'Red sprite' were associated with DEGs related to phenylpropanoid biosynthesis, phenylalanine metabolism and phenylalanine, tyrosine and tryptophan biosynthesis, as well as auxin content and DEGs related to the auxin signaling pathway.

13.
Plants (Basel) ; 12(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37514341

RESUMO

4,8-dihydroxy-l-tetralone (4,8-DHT) is an allelochemical isolated from the outer bark of Carya cathayensis that acts as a plant growth inhibitor. In order to explore the mechanism of 4,8-DHT inhibiting weed activity, we treated three species of Digitaria sanguinalis, Arabidopsis thaliana, and Poa annua with different concentrations of 4,8-DHT and performed phenotype observation and transcriptome sequencing. The results showed that with an increase in 4,8-DHT concentration, the degree of plant damage gradually deepened. Under the same concentration of 4,8-DHT, the damage degree of leaves and roots of Digitaria sanguinalis was the greatest, followed by Arabidopsis thaliana, while Poa annua had the least damage, and the leaves turned slightly yellow. Transcriptome data showed that 24536, 9913, and 1662 differentially expressed genes (DEGs) were identified in Digitaria sanguinalis, Arabidopsis thaliana, and Poa annua, respectively. These DEGs were significantly enriched in photosynthesis, carbon fixation, glutathione metabolism, phenylpropanoid biosynthesis, and oxidative phosphorylation pathways. In addition, DEGs were also enriched in plant hormone signal transduction and the MAPK signal pathway in Arabidopsis thaliana. Further analysis showed that after 4,8-DHT treatment, the transcript levels of photosynthesis PSI- and PSII-related genes, LHCA/B-related genes, Rubisco, and PEPC were significantly decreased in Digitaria sanguinalis and Arabidopsis thaliana. At the same time, the transcription levels of genes related to glutathione metabolism and the phenylpropanoid biosynthesis pathway in Digitaria sanguinalis were also significantly decreased. However, the expression of these genes was upregulated in Arabidopsis thaliana and Poa annua. These indicated that 4,8-DHT affected the growth of the three plants through different physiological pathways, and then played a role in inhibiting plant growth. Simultaneously, the extent to which plants were affected depended on the tested plants and the content of 4,8-DHT. The identification of weed genes that respond to 4,8-DHT has helped us to further understand the inhibition of plant growth by allelochemicals and has provided a scientific basis for the development of allelochemicals as herbicides.

14.
Mol Ther Nucleic Acids ; 33: 191-204, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37483274

RESUMO

Peripheral nerve injury can lead to progressive muscle atrophy and poor motor function recovery, which is a difficult point of treatment, and the mechanism needs to be further explored. In previous studies, we found that miR-142a-3p was significantly upregulated and persistently highly expressed in denervated mouse skeletal muscle. Here, we show that overexpression of miR-142a-3p inhibited the growth and differentiation of C2C12 myoblast, while knockdown of miR-142a-3p had a promoting effect. In vitro, knockdown of miR-142a-3p in denervated mouse skeletal muscle effectively increased proliferating muscle satellite cells and ameliorated muscle atrophy. Mechanistically, the myoregulator Mef2a was proved to be an important downstream target of miR-142a-3p, and miR-142a-3p regulates skeletal muscle differentiation and regeneration by inhibiting the expression of Mef2a. The co-knockdown of Mef2a and miR-142a-3p effectively alleviated or offset the biological effects of miR-142a-3p knockdown. In conclusion, our data revealed that miR-142a-3p regulates neurogenic skeletal muscle atrophy by targeting Mef2a.

15.
RSC Adv ; 13(4): 2635-2648, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36741154

RESUMO

Gynura segetum (Lour.) Merr. (GS), has been widely used in Chinese folk medicine and can promote circulation, relieve pain and remove stasis. In recent years, the hepatotoxicity caused by GS has been reported, however its mechanism is not fully elucidated. Metabolomic techniques are powerful means to explore the toxicological mechanism and therapeutic effects of traditional Chinese medicine. The purpose of this study was to establish a serum metabolomics method based on Gas Chromatography-Mass Spectrometry (GC-MS) to explore the hepatotoxicity mechanism of different exposure times and doses of GS in rats. Sprague Dawley (SD) rats were administered daily with distilled water, 7.5 g kg-1 GS, or 15 g kg-1 GS by intragastrical gavage for either 10 or 21 days. The methods adopted included enzyme-linked immunosorbent assay (ELISA), Hematoxylin and Eosin (H&E) staining and GC-MS-based serum metabolomics. Serum biochemistry analysis showed that the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglycerides (TG), total bilirubin (TBIL) and total bile acid (TBA) significantly (P < 0.05) increased while the levels of albumin (ALB) and high-density lipoprotein (HDL) significantly (P < 0.05) decreased in GS-treated groups, compared with the control group. Interestingly, the ALT, AST, TG and ALB levels changed in a time- and dose-dependent manner. The results of H&E staining showed the degree of liver damage after administration of GS gradually deepened with the extension of administration time and the increase of the dose. According to the results of metabolomics analysis, 26 differential metabolites were identified, which were involved in 8 metabolic pathways including phenylalanine metabolism, glyoxylic acid and dicarboxylic acid metabolism and so on. Meanwhile, the number of differential metabolites in different GS-treated groups was associated with GS exposure time and dose. Therefore, we concluded that GS might induce hepatotoxicity depending on the exposure time and dose.

16.
J Cell Biol ; 222(1)2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36282216

RESUMO

RNA polymerase I (Pol I) synthesizes about 60% of cellular RNA by transcribing multiple copies of the ribosomal RNA gene (rDNA). The transcriptional activity of Pol I controls the level of ribosome biogenesis and cell growth. However, there is currently a lack of methods for monitoring Pol I activity in real time. Here, we develop LiveArt (live imaging-based analysis of rDNA transcription) to visualize and quantify the spatiotemporal dynamics of endogenous ribosomal RNA (rRNA) synthesis. LiveArt reveals mitotic silencing and reactivation of rDNA transcription, as well as the transcriptional kinetics of interphase rDNA. Using LiveArt, we identify SRFBP1 as a potential regulator of rRNA synthesis. We show that rDNA transcription occurs in bursts and can be altered by modulating burst duration and amplitude. Importantly, LiveArt is highly effective in the screening application for anticancer drugs targeting Pol I transcription. These approaches pave the way for a deeper understanding of the mechanisms underlying nucleolar functions.


Assuntos
RNA Polimerase I , Transcrição Gênica , Humanos , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , DNA Ribossômico/genética , RNA Ribossômico/genética , Nucléolo Celular/genética , Nucléolo Celular/metabolismo
17.
Sci Rep ; 12(1): 22654, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36587048

RESUMO

After sequencing, it is common to screen ncRNA according to expression differences. But this may lose a lot of valuable information and there is currently no indicator to characterize the regulatory function and participation degree of ncRNA on transcriptome. Based on existing pathway enrichment methods, we developed a new algorithm to calculating the participation degree of ncRNA in transcriptome (PDNT). Here we analyzed multiple data sets, and differentially expressed genes (DEGs) were used for pathway enrichment analysis. The PDNT algorithm was used to calculate the Contribution value (C value) of each ncRNA based on its target genes and the pathways they participates in. The results showed that compared with ncRNAs screened by log2 fold change (FC) and p-value, those screened by C value regulated more DEGs in IPA canonical pathways, and their target DEGs were more concentrated in the core region of the protein-protein interaction (PPI) network. The ranking of disease critical ncRNAs increased integrally after sorting with C value. Collectively, we found that the PDNT algorithm provides a measure from another view compared with the log2FC and p-value and it may provide more clues to effectively evaluate ncRNA.


Assuntos
Mapas de Interação de Proteínas , Transcriptoma , Transcriptoma/genética , Mapas de Interação de Proteínas/genética , RNA não Traduzido/genética , Algoritmos , Movimento Celular , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos , Redes Reguladoras de Genes
18.
Front Psychiatry ; 13: 902558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506450

RESUMO

Nurses often face a variety of work-related and life-related stresses that make them more prone to symptoms of post-traumatic stress disorder (PTSD), yet the underlying mechanism of this association is poorly understood. To address this research gap, we investigated the mediating role of maladaptive cognitive emotion regulation strategies in the relationship between perceived stress and PTSD symptoms, and explored whether psychological capital could moderate the direct or indirect effects between perceived stress and PTSD symptoms. Nurses (N = 723) completed a questionnaire about perceived stress, PTSD symptoms, maladaptive cognitive emotion regulation strategies and psychological capital. After controlling for gender, age and work department, perceived stress was positively correlated with PTSD symptoms. Maladaptive cognitive emotion regulation strategies partially mediated this relationship. Psychological capital moderates the effects of perceived stress and maladaptive cognitive emotion regulation strategies on PTSD symptoms. Specifically, the positive correlation between perceived stress and PTSD symptoms was stronger among nurses with low levels of psychological capital than among nurses with high levels of psychological capital. At the same time, the positive correlation between maladaptive cognitive emotion regulation strategies and PTSD symptoms was stronger in nurses with a low level of psychological capital. Therefore, cognitive strategies and interventions oriented toward psychological capital may alleviate the PTSD symptoms of nurses in stressful situations.

19.
Sci Rep ; 12(1): 19959, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402912

RESUMO

Cinnamon aqueous extract's active substance base remains unclear and its mechanisms, mainly the therapeutic target of anti-Alzheimer's disease (AD)-related GABAergic synaptic dysfunction, remain unclear. Here, 30 chemical components were identified in the aqueous extract of cinnamon using LC/MS; secondly, we explored the brain-targeting components of the aqueous extract of cinnamon, and 17 components had a good absorption due to the blood-brain barrier (BBB) limitation; thirdly, further clustering analysis of active ingredient targets by network pharmacology showed that the GABA pathway with GABRG2 as the core target was significantly enriched; then, we used prominent protein-protein interactions (PPI), relying on a protein-metabolite network, and identified the GABRA1, GABRB2 and GABRA5 as the closest targets to GABRG2; finally, the affinity between the target and its cognate active compound was predicted by molecular docking. In general, we screened five components, methyl cinnamate, propyl cinnamate, ( +)-procyanidin B2, procyanidin B1, and myristicin as the brain synapse-targeting active substances of cinnamon using a systematic strategy, and identified GABRA1, GABRB2, GABRA5 and GABRG2 as core therapeutic targets of cinnamon against Alzheimer's disease-related GABAergic synaptic dysfunction. Exploring the mechanism of cinnamon' activities through multi-components and multiple targets strategies promise to reduce the threat of single- target and symptom-based drug discovery failure.


Assuntos
Doença de Alzheimer , Medicamentos de Ervas Chinesas , Cinnamomum zeylanicum , Simulação de Acoplamento Molecular , Farmacologia em Rede , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Medicamentos de Ervas Chinesas/farmacologia
20.
Mol Ther Nucleic Acids ; 30: 325-336, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36381585

RESUMO

Long-term denervation leads to the disintegration of nicotinic acetylcholine receptor (nAChR) located at the endplate structure, which translates to deficits in functional activation despite nerve repair. Because of a lack of effective measures to protect AChR expression, we explored the effect of alterations in muscular miR-142a-3p on nAChR. In this study, we constructed a model of miR-142a-3p knockdown by transfecting a miR-142a-3p inhibitor short hairpin RNA (shRNA) into C2C12 myotubes, and we injected this miR-142a-3p inhibitor shRNA into the tibialis anterior (TA) muscle in uninjured mice and in denervated mice by transecting the sciatic nerve. Our results showed that miR-142a-3p knockdown led to an increased number and area of AChR clusters in myotubes in vitro and larger neuromuscular endplates in adult mice. Furthermore, miR-142a-3p knockdown delayed the disintegration of motor endplates after denervation. Last, upon miR-142a-3p knockdown in uninjured and denervated mice, we observed an increase in the mRNA levels of five AChR subunits as well as mRNAs of genes implicated in AChR transcription and AChR clustering. Together, these results suggest that miR-142a-3p may be a potential target for therapeutic intervention to prevent motor endplate degradation following peripheral nerve injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA