RESUMO
Sealing wet porous membranes is a major challenge when fabricating cell encapsulation devices. Herein, we report the development of an Autoclavable Transparent Thermal Cutter (ATTC) for reliably sealing wet nanofibrous membranes. Notably, the ATTC is autoclavable and transparent, thus enabling in situ visualization of the sealing process in a sterile environment and ensuring an appropriate seal. In addition, the ATTC could generate smooth, arbitrary-shaped sealing ends with excellent mechanical properties when sealing PA6, PVDF, and TPU nanofibrous tubes and PP microporous membranes. Importantly, the ATTC could reliably seal wet nanofibrous tubes, which can shoulder a burst pressure up to 313.2 ± 19.3 kPa without bursting at the sealing ends. Furthermore, the ATTC sealing process is highly compatible with the fabrication of cell encapsulation devices, as verified by viability, proliferation, cell escape, and cell function tests. We believe that the ATTC could be used to reliably seal cell encapsulation devices with minimal side effects.
RESUMO
The evolution of a two-chambered heart, with an atrium and a ventricle, has improved heart function in both deuterostomes (vertebrates) and some protostomes (invertebrates). Although studies have examined the unique structure and function of these two chambers, molecular comparisons are few and limited to vertebrates. Here, we focus on the two-chambered protostome heart of the mollusks, offering data that may provide a better understanding of heart evolution. Specifically, we asked if the atrium and ventricle differ at the molecular level in the mollusk heart. To do so, we examined two very different species, the giant African land snail (Lissachatina fulica) and the relatively small, aquatic yesso scallop (Mizuhopecten yessoensis), with the assumption that if they exhibited commonality these similarities would likely reflect those across the phylum. We found that, although the hearts of these two species differed histologically, their cardiac gene function enrichments were similar, as revealed by transcriptomic analysis. Furthermore, the atrium and ventricle in each species had distinct gene function clusters, suggesting an evolutionary differentiation of cardiac chambers in mollusks. Finally, to explore the relationship between vertebrate and invertebrate two-chambered hearts, we compared our transcriptomic data with published data from the zebrafish, a well-studied vertebrate model with a two-chambered heart. Our analysis indicated a functional similarity of ventricular genes between the mollusks and the zebrafish, suggesting that the ventricle was differentiated to achieve the same functions in invertebrates and vertebrates. As the first such study on protostomes, our findings offered initial insights into how the two-chambered heart arose, including a possible understanding of its occurrence in both protostomes and deuterostomes. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00202-0.