Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(15): e34991, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39157315

RESUMO

Common cancer complications include bone cancer pain (BCP), which was not sufficiently alleviated by traditional analgesics. More safe and effective therapy was urgent needed. Metformin relieved osteoarthritis pain, but the analgesia of Metformin in BCP was not well studied. The study aimed to explore the Metformin-mediated analgesic effect and its molecular mechanisms in BCP rats. We demonstrated that Walker 256 cell transplantation into the medullary cavity of the tibia worsened mechanical allodynia in BCP rats, increased the expression of TGFß1 in the metastatic bone tissue, and raised the expression of TGFßRI and TRPV1 in the L4-6 dorsal root ganglion (DRG) of BCP rats. While, selectively blockade of TGFßRI by SD208 could obviously elevated the paw withdraw threshold (PWT) of BCP rats, together with decreased TRPV1 expression in L4-6 DRG. Notably, continuous Metformin treatment reduced TGFß1, TGFßRI and TRPV1 expression, and relieved mechanical allodynia of BCP rats in a long-term effect. In conclusion, these results illustrated that Metformin ameliorated bone cancer pain, and the downregulation of TGFß1-TGFßRI-TRPV1 might be a potential mechanism of Metformin-mediated analgesia in BCP.

2.
Brain Res ; 1811: 148405, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37164174

RESUMO

BACKGROUND: Bone cancer pain (BCP) remains a clinical challenge due to the limited and side effects of therapeutic methods. Folic acid has been known as an FDA approved dietary supplement and proved to have an analgesic effect in neuropathic pain. Here we investigate the role and mechanism of folic acid in bone cancer pain of a rat model. METHODS: Walker 256 tumor cells were inoculated into the left tibia of rats to induce bone cancer pain model. Pain reflex were assessed by paw withdrawal threshold (PWT) response to Von Frey filaments and paw withdrawal latency (PWL) response to thermal stimulation. Folic acid was injected intraperitoneally to evaluate its analgesic effect in rats with bone cancer pain. Western blotting and qPCR were used to determine P2X2/3 receptor protein and mRNA levels in ipsilateral L4-6 dorsal root ganglion (DRG) and spinal dorsal horn (SDH). RESULTS: The PWT and PWL of rats with bone cancer pain were obviously decreased compared to the naïve and sham rats. Interestingly, continuous folic acid treatment significantly increased the PWT and PWL of rats with bone cancer pain. P2X2 and P2X3 receptors were clearly upregulated at both mRNA and protein expression in L4-6 DRG and SDH of rats with bone cancer pain. P2X2 and P2X3 receptors were mainly localized with CGRP (calcitonin gene-related peptide) or IB4 (isolectin B4) positive neurons in L4-6 DRG of rats with bone cancer pain. Notably, continuous folic acid treatment significantly reduced the expression of P2X2 and P2X3 receptors in L4-6 DRG and SDH of rats with bone cancer pain. Finally, intrathecal injection of A317491 (a selective antagonist of P2X2/3 receptors) markedly elevated the PWT and PWL of rats with bone cancer pain. CONCLUSION: These results suggest that folic acid has an effective antinociceptive effect on bone cancer pain, which is mediated by downregulating P2X2/3 receptors in L4-6 DRG and SDH of rats with bone cancer pain. Folic acid may be a novel therapeutic strategy in cancer patients for pain relief.


Assuntos
Neoplasias Ósseas , Dor do Câncer , Neuralgia , Ratos , Animais , Dor do Câncer/metabolismo , Ratos Sprague-Dawley , Ácido Fólico/farmacologia , Ácido Fólico/metabolismo , Ácido Fólico/uso terapêutico , Neuralgia/metabolismo , Neoplasias Ósseas/patologia , Analgésicos/farmacologia , Analgésicos/uso terapêutico , RNA Mensageiro/metabolismo , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA