Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Theranostics ; 14(7): 2794-2815, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773984

RESUMO

Rationale: Idiopathic pulmonary fibrosis (IPF) is an irreversible, fatal interstitial lung disease lacking specific therapeutics. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the nicotinamide adenine dinucleotide (NAD) salvage biosynthesis pathway and a cytokine, has been previously reported as a biomarker for lung diseases; however, the role of NAMPT in pulmonary fibrosis has not been elucidated. Methods: We identified the NAMPT level changes in pulmonary fibrosis by analyzing public RNA-Seq databases, verified in collected clinical samples and mice pulmonary fibrosis model by Western blotting, qRT-PCR, ELISA and Immunohistochemical staining. We investigated the role and mechanism of NAMPT in lung fibrosis by using pharmacological inhibition on NAMPT and Nampt transgenic mice. In vivo macrophage depletion by clodronate liposomes and reinfusion of IL-4-induced M2 bone marrow-derived macrophages (BMDMs) from wild-type mice, combined with in vitro cell experiments, were performed to further validate the mechanism underlying NAMPT involving lung fibrosis. Results: We found that NAMPT increased in the lungs of patients with IPF and mice with bleomycin (BLM)-induced pulmonary fibrosis. NAMPT inhibitor FK866 alleviated BLM-induced pulmonary fibrosis in mice and significantly reduced NAMPT levels in bronchoalveolar lavage fluid (BALF). The lung single-cell RNA sequencing showed that NAMPT expression in monocytes/macrophages of IPF patients was much higher than in other lung cells. Knocking out NAMPT in mouse monocytes/macrophages (Namptfl/fl;Cx3cr1CreER) significantly alleviated BLM-induced pulmonary fibrosis in mice, decreased NAMPT levels in BALF, reduced the infiltration of M2 macrophages in the lungs and improved mice survival. Depleting monocytes/macrophages in Namptfl/fl;Cx3cr1CreER mice by clodronate liposomes and subsequent pulmonary reinfusion of IL-4-induced M2 BMDMs from wild-type mice, reversed the protective effect of monocyte/macrophage NAMPT-deletion on lung fibrosis. In vitro experiments confirmed that the mechanism of NAMPT engaged in pulmonary fibrosis is related to the released NAMPT by macrophages promoting M2 polarization in a non-enzyme-dependent manner by activating the STAT6 signal pathway. Conclusions: NAMPT prompts bleomycin-induced pulmonary fibrosis by driving macrophage M2 polarization in mice. Targeting the NAMPT of monocytes/macrophages is a promising strategy for treating pulmonary fibrosis.


Assuntos
Bleomicina , Citocinas , Fibrose Pulmonar Idiopática , Macrófagos , Camundongos Endogâmicos C57BL , Nicotinamida Fosforribosiltransferase , Animais , Nicotinamida Fosforribosiltransferase/metabolismo , Camundongos , Macrófagos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Citocinas/metabolismo , Humanos , Modelos Animais de Doenças , Pulmão/patologia , Pulmão/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Camundongos Transgênicos , Masculino , Piperidinas/farmacologia , Feminino , Acrilamidas
2.
Phytomedicine ; 129: 155604, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38614042

RESUMO

BACKGROUND: Bone deficiency-related diseases caused by various factors have disrupted the normal function of the skeleton and imposed a heavy burden globally, urgently requiring potential new treatments. The multi-faceted role of compounds like ginsenosides and their interaction with the bone microenvironment, particularly osteoblasts can promote bone formation and exhibit anti-inflammatory, vascular remodeling, and antibacterial properties, holding potential value in the treatment of bone deficiency-related diseases and bone tissue engineering. PURPOSE: This review summarizes the interaction between ginsenosides and osteoblasts and the bone microenvironment in bone formation, including vascular remodeling and immune regulation, as well as their therapeutic potential and toxicity in the broad treatment applications of bone deficiency-related diseases and bone tissue engineering, to provide novel insights and treatment strategies. METHODS: The literature focusing on the mechanisms and applications of ginsenosides in promoting bone formation before March 2024 was searched in PubMed, Web of Science, Google Scholar, Scopus, and Science Direct databases. Keywords such as "phytochemicals", "ginsenosides", "biomaterials", "bone", "diseases", "bone formation", "microenvironment", "bone tissue engineering", "rheumatoid arthritis", "periodontitis", "osteoarthritis", "osteoporosis", "fracture", "toxicology", "pharmacology", and combinations of these keywords were used. RESULTS: Ginsenoside monomers regulate signaling pathways such as WNT/ß-catenin, FGF, and BMP/TGF-ß, stimulating osteoblast generation and differentiation. It exerts angiogenic and anti-inflammatory effects by regulating the bone surrounding microenvironment through signaling such as WNT/ß-catenin, NF-κB, MAPK, PI3K/Akt, and Notch. It shows therapeutic effects and biological safety in the treatment of bone deficiency-related diseases, including rheumatoid arthritis, osteoarthritis, periodontitis, osteoporosis, and fractures, and bone tissue engineering by promoting osteogenesis and improving the microenvironment of bone formation. CONCLUSION: The functions of ginsenosides are diverse and promising in treating bone deficiency-related diseases and bone tissue engineering. Moreover, potential exists in regulating the bone microenvironment, modifying biomaterials, and treating inflammatory-related bone diseases and dental material applications. However, the mechanisms and effects of some ginsenoside monomers are still unclear, and the lack of clinical research limits their clinical application. Further exploration and evaluation of the potential of ginsenosides in these areas are expected to provide more effective methods for treating bone defects.


Assuntos
Ginsenosídeos , Osteoblastos , Osteogênese , Ginsenosídeos/farmacologia , Humanos , Osteogênese/efeitos dos fármacos , Animais , Osteoblastos/efeitos dos fármacos , Engenharia Tecidual/métodos , Osso e Ossos/efeitos dos fármacos
3.
Microorganisms ; 12(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38399819

RESUMO

Aeromonas hydrophila, a Gram-negative bacterium widely found in freshwater environments, acts as a common conditional pathogen affecting humans, livestock, and aquatic animals. In this study, the impact of oridonin, an ent-kaurane diterpenoid compound derived from Rabdosia rubescens, on the virulence factors of A. hydrophila AS 1.1801 and its antibacterial mechanism was elucidated. The minimum inhibitory concentration (MIC) of oridonin against A. hydrophila AS 1.1801 was 100 µg/mL. Oridonin at inhibitory concentrations could significantly increase the electrical conductivity in the supernatant and escalate nucleic acid leakage (p < 0.01). This effect was concomitant with observed distortions in bacterial cells, the formation of cytoplasmic cavities, cellular damage, and pronounced inhibition of protein and nucleic acid synthesis. Additionally, oridonin at inhibitory levels exhibited a noteworthy suppressive impact on A. hydrophila AS 1.1801 across biofilm formation, motility, hemolytic activity, lipase activity, and protease activity (p < 0.05), demonstrating a dose-dependent enhancement. qRT-PCR analysis showed that the gene expression of luxR, qseB and omp were significantly downregulated after oridonin treatment in A. hydrophila AS 1.1801 (p < 0.05). Our results indicated that oridonin possessed significant antibacterial and anti-virulence effects on A. hydrophila AS 1.1801.

4.
J Orthop Translat ; 44: 139-154, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38328343

RESUMO

Objective: It is a common clinical phenomenon that blood infiltrates into the injured tendon caused by sports injuries, accidental injuries, and surgery. However, the role of blood infiltration into the injured tendon has not been investigated. Methods: A blood-induced rat model was established and the impact of blood infiltration on inflammation and HO of the injured tendon was assessed. Cell adhesion, viability, apoptosis, and gene expression were measured to evaluate the effect of blood treatment on tendon stem/progenitor cells (TSPCs). Then RNA-seq was used to assess transcriptomic changes in tendons in a blood infiltration environment. At last, the small molecule drug PI3K inhibitor LY294002 was used for in vivo and in vitro HO treatment. Results: Blood caused acute inflammation in the short term and more severe HO in the long term. Then we found that blood treatment increased cell apoptosis and decreased cell adhesion and tenonic gene expression of TSPCs. Furthermore, blood treatment promoted osteochondrogenic differentiation of TSPCs. Next, we used RNA-seq to find that the PI3K/AKT signaling pathway was activated in blood-treated tendon tissues. By inhibiting PI3K with a small molecule drug LY294002, the expression of osteochondrogenic genes was markedly downregulated while the expression of tenonic genes was significantly upregulated. At last, we also found that LY294002 treatment significantly reduced the tendon HO in the rat blood-induced model. Conclusion: Our findings indicate that the upregulated PI3K/AKT signaling pathway is implicated in the aggravation of tendon HO. Therefore, inhibitors targeting the PI3K/AKT pathway would be a promising approach to treat blood-induced tendon HO.

5.
Clinics (Sao Paulo) ; 78: 100303, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37931529

RESUMO

OBJECTIVE: Immunotherapy has been proven to improve the prognosis of patients with advanced malignancy but has shown limited efficacy in patients with Colorectal Cancer (CRC). Increasing evidence suggests that butyrate, a bacterial metabolite, enhances the efficacy of cancer therapies by modulating immune responses. Here, the effect and the mechanism of butyrate on anti-PD-L1 therapy were investigated in CRC. METHODS: The expression of PD-L1 and STAT1, and the lysine acetylation of STAT1 in CRC cells were observed after treatment with butyrate (2, 5, and 10 mM) for 24h or butyrate (5 mM) for 8, 16, and 24h. Site-directed mutations of STAT1 (K410R or K413R) were introduced to determine the role of STAT1 acetylation in modulating PD-L1 expression. The effect of butyrate on the cytotoxicity of CD8+ T-cells against CRC cells with or without PD-L1 overexpression was explored in vitro and in vivo. RESULTS: Butyrate could suppress IFN-γ-induced PD-L1 up-regulation in CRC cells in a dose- and time-dependent way. Butyrate promoted the lysine acetylation of STAT1 to reduce STAT1 expression. Non-acetylated mutant STAT1 not only ameliorated butyrate-induced suppression of lysine acetylation and nuclear translocation of STAT1 but also blocked the effect of butyrate on PD-L1. Butyrate attenuated the IFN-γ-induced impairment of CD8+ T-cell cytotoxicity against CRC cells. Meanwhile, butyrate suppressed CRC tumor growth by enhancing CD8+ T-cell infiltration. However, directly overexpressing PD-L1 in CRC cells could abolish the effect of butyrate. CONCLUSION: Butyrate strengthens the immune response to CRC cells by suppressing PD-L1 expression via acetylation of STAT1.


Assuntos
Antígeno B7-H1 , Neoplasias Colorretais , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Butiratos/farmacologia , Butiratos/metabolismo , Lisina/metabolismo , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Fator de Transcrição STAT1/metabolismo
6.
Biofabrication ; 16(1)2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37797606

RESUMO

Untreated osteochondral defects will develop into osteoarthritis, affecting patients' quality of life. Since articular cartilage and subchondral bone exhibit distinct biological characteristics, repairing osteochondral defects remains a major challenge. Previous studies have tried to fabricate multilayer scaffolds with traditional methods or 3D printing technology. However, the efficacy is unsatisfactory because of poor control over internal structures or a lack of integrity between adjacent layers, severely compromising repair outcomes. Therefore, there is a need for a biomimetic scaffold that can simultaneously boost osteochondral defect regeneration in both structure and function. Herein, an integrated bilayer scaffold with precisely controlled structures is successfully 3D-printed in one step via digital light processing (DLP) technology. The upper layer has both 'lotus- and radial-' distribution pores, and the bottom layer has 'lotus-' pores to guide and facilitate the migration of chondrocytes and bone marrow mesenchymal stem cells, respectively, to the defect area. Tuning pore sizes could modulate the mechanical properties of scaffolds easily. Results show that 3D-printed porous structures allow significantly more cells to infiltrate into the area of 'lotus- and radial-' distribution pores during cell migration assay, subcutaneous implantation, andin situtransplantation, which are essential for osteochondral repair. Transplantation of this 3D-printed bilayer scaffold exhibits a promising osteochondral repair effect in rabbits. Incorporation of Kartogenin into the upper layer of scaffolds further induces better cartilage formation. Combining small molecules/drugs and precisely size-controlled and layer-specific porous structure via DLP technology, this 3D-printed bilayer scaffold is expected to be a potential strategy for osteochondral regeneration.


Assuntos
Cartilagem Articular , Alicerces Teciduais , Humanos , Animais , Coelhos , Alicerces Teciduais/química , Biomimética , Qualidade de Vida , Movimento Celular , Impressão Tridimensional , Engenharia Tecidual/métodos
7.
Clinics ; 78: 100303, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1528408

RESUMO

Abstract Objective Immunotherapy has been proven to improve the prognosis of patients with advanced malignancy but has shown limited efficacy in patients with Colorectal Cancer (CRC). Increasing evidence suggests that butyrate, a bacterial metabolite, enhances the efficacy of cancer therapies by modulating immune responses. Here, the effect and the mechanism of butyrate on anti-PD-L1 therapy were investigated in CRC. Methods The expression of PD-L1 and STAT1, and the lysine acetylation of STAT1 in CRC cells were observed after treatment with butyrate (2, 5, and 10 mM) for 24h or butyrate (5 mM) for 8, 16, and 24h. Site-directed mutations of STAT1 (K410R or K413R) were introduced to determine the role of STAT1 acetylation in modulating PD-L1 expression. The effect of butyrate on the cytotoxicity of CD8+ T-cells against CRC cells with or without PD-L1 overexpression was explored in vitro and in vivo. Results Butyrate could suppress IFN-γ-induced PD-L1 up-regulation in CRC cells in a dose- and time-dependent way. Butyrate promoted the lysine acetylation of STAT1 to reduce STAT1 expression. Non-acetylated mutant STAT1 not only ameliorated butyrate-induced suppression of lysine acetylation and nuclear translocation of STAT1 but also blocked the effect of butyrate on PD-L1. Butyrate attenuated the IFN-γ-induced impairment of CD8+ T-cell cytotoxicity against CRC cells. Meanwhile, butyrate suppressed CRC tumor growth by enhancing CD8+ T-cell infiltration. However, directly overexpressing PD-L1 in CRC cells could abolish the effect of butyrate. Conclusion Butyrate strengthens the immune response to CRC cells by suppressing PD-L1 expression via acetylation of STAT1.

8.
Acta Chim Slov ; 69(3): 674-680, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36196825

RESUMO

A pair of structurally similar dicyanamide bridged copper(II) and zinc(II) complexes [CuL(dca)]n (1) and [ZnL(dca)]n (2), were prepared from the fluorine containing Schiff base 5-fluoro-2-(((2-hydroxyethyl)imino)methyl)phenol (HL). The compounds were characterized by physico-chemical methods. Structures of the complexes were confirmed by single crystal X-ray diffraction. The Cu atom in complex 1 is in square pyramidal coordination, whereas the Zn atom in complex 2 is in trigonal bipyramidal coordination. The copper complex has effective Jack bean urease inhibitory activity, with IC50 value of 0.14±0.12 µmol L-1.


Assuntos
Complexos de Coordenação , Cobre , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Cristalografia por Raios X , Flúor , Fenóis , Bases de Schiff/química , Urease , Zinco/química
9.
Front Immunol ; 13: 849620, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159828

RESUMO

Cry toxins produced by Bacillus thuringiensis (Bt) are well known for their insecticidal activities against Lepidopteran, Dipteran, and Coleopteran species. In our previous work, we showed that trypsin-digested full-length Cry7Ab4 protoxin did not have insecticidal activity against Plutella xylostella larvae but strongly inhibited their growth. In this paper, we expressed and purified recombinant active Cry7Ab4 toxic core from Escherichia coli for bioassay and identified its binding proteins. Interestingly, Cry7Ab4 toxic core exhibited activity to delay the pupation of P. xylostella larvae. Using protein pull-down assay, several proteins, including basic juvenile hormone-suppressible protein 1-like (BJSP-1), were identified from the midgut juice of P. xylostella larvae as putative Cry7Ab4-binding proteins. We showed that feeding P. xylostella larval Cry7Ab4 toxic core upregulated the level of BJSP-1 mRNA in the hemocytes and fat body and decreased the free juvenile hormone (JH) level in larvae. BJSP-1 interacted with Cry7Ab4 and bound to free JH in vitro. A possible mechanism of Cry7Ab4 in delaying the pupation of P. xylostella larvae was proposed.


Assuntos
Inseticidas , Mariposas , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Inseticidas/metabolismo , Inseticidas/farmacologia , Hormônios Juvenis/metabolismo , Larva/metabolismo , Mariposas/metabolismo , RNA Mensageiro/metabolismo , Tripsina/metabolismo
10.
Nat Commun ; 13(1): 5211, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064711

RESUMO

Critical-sized bone defects often lead to non-union and full-thickness defects of the calvarium specifically still present reconstructive challenges. In this study, we show that neurotrophic supplements induce robust in vitro expansion of mesenchymal stromal cells, and in situ transplantation of neurotrophic supplements-incorporated 3D-printed hydrogel grafts promote full-thickness regeneration of critical-sized bone defects. Single-cell RNA sequencing analysis reveals that a unique atlas of in situ stem/progenitor cells is generated during the calvarial bone healing in vivo. Notably, we find a local expansion of resident Msx1+ skeletal stem cells after transplantation of the in situ cell culture system. Moreover, the enhanced calvarial bone regeneration is accompanied by an increased endochondral ossification that closely correlates to the Msx1+ skeletal stem cells. Our findings illustrate the time-saving and regenerative efficacy of in situ cell culture systems targeting major cell subpopulations in vivo for rapid bone tissue regeneration.


Assuntos
Células-Tronco Mesenquimais , Engenharia Tecidual , Regeneração Óssea , Osteogênese , Crânio , Células-Tronco , Alicerces Teciduais
11.
Jpn J Radiol ; 40(1): 86-93, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34279799

RESUMO

OBJECTIVE: To evaluate safety and feasibility of laparoscopic ultrasonography (LUS)-guided cryoablation of locally advanced pancreatic cancer (LAPC). PATIENTS AND METHODS: From April 2018 to December 2018, ten patients (five women, five men; mean age 58.2 ± 9.4 years) with LAPC underwent the operation. LUS was used to guide the cryoablation. Computed tomography (CT) imaging, biochemical analysis and pain score analysis by numeric rating scale (NRS) were used to assess treatment outcomes at 1 week and 3 months after the operation. RESULTS: Cryoablation was performed by the operation in all cases. Seven patients received complete ablation and the success rate of operation was 70%. Two cryoablation cycles and an average of 1.4 ± 0.5 cryoprobes were used. The average freezing time and operation time were 23.8 ± 1.0 and 110.5 ± 24.7 min, respectively. The mean blood loss was 52.0 ± 16.6 ml. No major complications were observed after the operation. The mean maximum tumor diameter determined by CT decreased from 4.9 ± 0.7 cm before the operation to 4.7 ± 1.0 cm at 1 week and 4.6 ± 1.3 cm at 3 months, with P values of 0.53 and 0.51 (relative to the preoperative values), respectively. Postoperative CT imaging results suggested tumor necrosis in cryoablation-treated areas. The mean CA19-9 levels decreased from 347.5 ± 345.7 U/mL before operation to 190.4 ± 153.8 U/mL at 1 week and 182.7 ± 165.6 U/mL at 3 months, with P values of 0.15 and 0.14 (relative to the preoperative values), respectively. The average pain scores declined from 6.9 ± 1.1 before operation to 1.3 ± 1.2 at 1 week and 2.0 ± 0.8 at 3 months, with both P values of < 0.01 (relative to the preoperative values). CONCLUSION: This preliminary study suggested that LUS-assisted cryoablation was a safe and feasible treatment for LAPC.


Assuntos
Criocirurgia , Neoplasias Renais , Laparoscopia , Neoplasias Pancreáticas , Idoso , Feminino , Humanos , Neoplasias Renais/cirurgia , Masculino , Pessoa de Meia-Idade , Pâncreas , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/cirurgia , Resultado do Tratamento , Ultrassonografia
12.
DNA Cell Biol ; 40(6): 757-775, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33978457

RESUMO

Pancreatic cancer is a common malignant tumor worldwide. Extensive studies have been conducted on the functional role of long noncoding RNAs in pancreatic cancer. In this study, long intergenic nonprotein coding RNA 173 (LINC00173) was highly expressed in pancreatic cancer tissues. In vitro functional experiments showed that LINC00173 overexpression inhibited the proliferation and invasion of pancreatic cancer cells and promoted cell apoptosis in MIA PaCa-2 and PANC-1 cells. RNA sequencing analysis and Western blot assays demonstrated that LINC00173 reduced the expression of sphingosine kinase 1 (SPHK1) and then inhibited the protein expression of activated phospho-protein kinase B (AKT) and NF-κB. In vivo functional assays also revealed that LINC00173 inhibited the growth of pancreatic cancer xenografts, repressed cell proliferation, promoted cell apoptosis, and inhibited SPHK1 expression. The combined results of this study indicate that LINC00173 inhibits pancreatic cancer progression by repressing SPHK1 expression. Improving LINC00173 may represent a therapeutic strategy for pancreatic cancer in the future.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , RNA Longo não Codificante/fisiologia , Apoptose , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , NF-kappa B/metabolismo , Invasividade Neoplásica , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
13.
ACS Biomater Sci Eng ; 7(3): 806-816, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33715367

RESUMO

The fabrication of scaffolds that precisely mimic the natural structure and physiochemical properties of bone is still one of the most challenging tasks in bone tissue engineering. 3D printing techniques have drawn increasing attention due to their ability to fabricate scaffolds with complex structures and multiple bioinks. For bone tissue engineering, lithography-based 3D bioprinting is frequently utilized due to its printing speed, mild printing process, and cost-effective benefits. In this review, lithography-based 3D bioprinting technologies including SLA and DLP are introduced; their typical applications in biological system and bioinks are also explored and summarized. Furthermore, we discussed possible evolution of the hardware/software systems and bioinks of lithography-based 3D bioprinting, as well as their future applications.


Assuntos
Bioimpressão , Osso e Ossos , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais
14.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 37(12): 1395-1398, 2020 Dec 10.
Artigo em Chinês | MEDLINE | ID: mdl-33306831

RESUMO

OBJECTIVE: To trace a rare case of chronic myeloid leukemia (CML) with a four-way Philadelphia chromosome variant by cytogenetic analysis in order to provide a basis for the selection of treatment. METHODS: Bone marrow morphology, chromosomal karyotyping, fluorescence in situ hybridization (FISH) and real-time quantitative PCR (RQ-PCR) were used for the diagnosis and staging of the disease. Point mutations in the tyrosine kinase domain of ABL1 gene were detected by Sanger sequencing. RESULTS: The patient was initially diagnosed as CML in chronic phase (CML-CP) with a chromosomal karyotype of 46,XX,t(5;9;22;6)(q13;q34;q11;q25), while FISH revealed presence of a variant Philadelphia chromosome translocation. Clonal evolution has occurred after 38 months of tyrosine kinase inhibitor (TKI) treatment, when cytogenetic analysis revealed coexisting t(5;9;22;6)(q13;q34;q11;q25) and t(5;9;22;6;17)(q13;q34;q11;q25;q11). After 57 months of TKIs treatment, only the t(5;9;22;6;17) clone was detected. Three months later, hyperdiploidy with additional abnormalities were detected in addition to t(5;9;22;6;17). Three mutations, including p.Tyr253Phe, p.Thr315Ile and p.Gly250Glu, were identified in the tyrosine kinase domain of the ABL1 gene during the course of disease. The patient did not attain cytogenetic and molecular response to TKIs. CONCLUSION: The four-way variant translocation may be genetically unstable. Clonal evolution and genetic mutations are likely to occur during TKIs treatment, resulting in poor response to drug therapy. This observation, however, needs to be confirmed by large-scale studies.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Cromossomo Filadélfia , Translocação Genética , Inibidores Enzimáticos/uso terapêutico , Evolução Molecular , Feminino , Humanos , Hibridização in Situ Fluorescente , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Mutação/genética
15.
Acta Biomater ; 117: 246-260, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33007484

RESUMO

Multilayer scaffolds fabricated by 3D printing or other techniques have been used to repair osteochondral defects. However, it remains a challenge to regenerate the articular cartilage and subchondral bone simultaneously with higher performance. In the present study, we enhanced the repair efficiency of osteochondral defects by developing a bi-layer scaffold: an interleukin-4 (IL-4)-loaded radially oriented gelatin methacrylate (GelMA) scaffold printed with digital light processing (DLP) in the upper layer and a porous polycaprolactone and hydroxyapatite (PCL-HA) scaffold printed with fused deposition modeling (FDM) in the lower layer. An in vitro test showed that both layers supported cell adhesion and proliferation, as the lower layer promoted osteogenic differentiation and the upper layer with IL-4 relieved the negative effects of inflammation on murine chondrocytes, which were induced by interleukin-1ß (IL-1ß) and M1 macrophages. In a rabbit osteochondral defect repair model, the IL-4-loaded bi-layer scaffold group obtained the highest histological score (24 ± 2) compared to the nontreated (11 ± 1) and pure bi-layer scaffold (16 ± 1) groups after 16 weeks of implantation, which showed that the IL-4-loaded bi-layer scaffold promoted regeneration of both cartilage and subchondral bone with increased formation of neocartilage and neobone tissues. Thus, the IL-4-loaded bi-layer scaffold is an attractive candidate for repair and regeneration of osteochondral defects.


Assuntos
Cartilagem Articular , Alicerces Teciduais , Animais , Condrócitos , Interleucina-4 , Camundongos , Osteogênese , Impressão Tridimensional , Coelhos , Engenharia Tecidual
16.
Onco Targets Ther ; 13: 10417-10429, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33116621

RESUMO

BACKGROUND: Pancreatic cancer is a devastating malignancy with poor prognosis. Metformin, a classic anti-diabetes drug, seems to improve survival of pancreatic cancer patients in some studies. METHODS: Cell counting kit-8 assay was used to detect the BxPC-3 and MIAPaCa-2 cell viability after treatment with gemcitabine only or with different concentrations of metformin. The methylation state and expression level of miR-663 were detected by methylation analysis and RT-PCR. Dual-luciferase reporter gene analysis, Western blot and RT-PCR were used to confirm the target of miR-663. Moreover, xenograft experiment was also performed to validate the role of metformin in chemosensitivity in vivo. RESULTS: We found that metformin increased the chemosensitivity of pancreatic cancer cells to gemcitabine, and epithelial-mesenchymal transition (EMT) progress caused by gemcitabine was suppressed by metformin. We further explored the possible molecular mechanisms and it was demonstrated that CpG islands of miR-663 were hypomethylated and relative expression level of miR-663 was up-regulated after treatment of metformin. miR-663, an important cancer suppressor miRNA, was confirmed to increase the chemosensitivity of pancreatic cancer cells by reversing EMT directly targeted TGF-ß1. Moreover, we identified that metformin increased the chemosensitivity through up-regulating expression of miR-663. CONCLUSION: We demonstrated that metformin increased the chemosensitivity of pancreatic cancer cells to gemcitabine by reversing EMT through regulation DNA methylation of miR-663.

17.
J Mater Chem B ; 8(31): 6944-6955, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32490472

RESUMO

Surface-enhanced Raman scattering (SERS) nanotags are widely used in the biomedical field including live-cell imaging due to the high specificity from their fingerprint spectrum and the multiplexing capability from the ultra-narrow linewidth. However, long-term live-cell Raman imaging is limited due to the photodamage from a relatively long exposure time and a high laser power, which are needed for acquiring detectable Raman signals. In this work, we attempt to resolve this issue by developing ultrabright gap-enhanced resonance Raman tags (GERRTs), consisting of a petal-like gold core and a silver shell with the near-infrared resonant reporter of IR-780 embedded in between, for long-term and high-speed live-cell imaging. GERRTs exhibit an ultrahigh Raman intensity down to a single-nanoparticle level in aqueous solution and the solid state upon 785 nm excitation, allowing for high-resolution time-lapse live-cell Raman imaging with an exposure time of 1 ms per pixel and a laser power of 50 µW. Under these measurement conditions, we can possibly capture dynamic cellular processes with a high temporal resolution, and track living cells for long periods of time owing to the reduced photodamage to cells. These nanotags open new opportunities for ultrasensitive, low-phototoxic, and long-term live-cell imaging.


Assuntos
Imagem Molecular/métodos , Análise Espectral Raman , Sobrevivência Celular , Ouro/química , Células HeLa , Humanos , Prata/química
18.
Nat Commun ; 11(1): 516, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980613

RESUMO

Anticounterfeiting labels based on physical unclonable functions (PUFs), as one of the powerful tools against counterfeiting, are easy to generate but difficult to duplicate due to inherent randomness. Gap-enhanced Raman tags (GERTs) with embedded Raman reporters show strong intensity enhancement and ultra-high photostability suitable for fast and repeated readout of PUF labels. Herein, we demonstrate a PUF label fabricated by drop-casting aqueous GERTs, high-speed read using a confocal Raman system, digitized through coarse-grained coding methods, and authenticated via pixel-by-pixel comparison. A three-dimensional encoding capacity of over 3 × 1015051 can be achieved for the labels composed of ten types of GERTs with a mapping resolution of 2500 pixels and quaternary encoding of Raman intensity levels at each pixel. Authentication experiments have ensured the robustness and security of the PUF system, and the practical viability is demonstrated. Such PUF labels could provide a potential platform to realize unbreakable anticounterfeiting.

19.
Int J Biochem Cell Biol ; 120: 105687, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31927104

RESUMO

BACKGROUNDS/AIMS: Pancreatic cancer is a digestive system tumour disease with a notably poor prognosis and a 5-year survival rate of less than 10 %. In recent years, peptide drugs have shown great clinical value in antitumour applications. We aim to identify differentially expressed peptides by using peptidomics techniques to explore the mechanisms involved in the development and pathology of pancreatic cancer. METHODS: We performed peptidomic analysis of pancreatic cancer and paired paracancerous tissues by using ITRAQ labelling technology and conducted in-depth bioinformatics analysis and functional studies on differentially expressed peptides. RESULTS: A total of 2,881 peptides were identified, of which 133 were differentially expressed (116 were upregulated and 17 were downregulated). By using GO analysis, the differentially expressed peptides were found to be closely related to the tumour microenvironment and extracellular matrix. KEGG enrichment analysis revealed that precursor proteins were closely related to the T2DM and RAS signalling pathways. The endogenous peptide P1DG can significantly inhibit the proliferation, migration and invasion of pancreatic cancer cells. CONCLUSION: P1DG and its precursor GAPDH may be closely related to the proliferation, migration and invasion of pancreatic cancer. Peptidomics can aid in understanding the pathogenesis of pancreatic cancer more comprehensively.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Peptídeos/metabolismo , Idoso , Sequência de Aminoácidos , Carcinoma Ductal Pancreático/genética , Biologia Computacional , Ontologia Genética , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Peptídeos/genética , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
20.
Acta Biomater ; 104: 210-220, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31927113

RESUMO

Multi-modality imaging agents are desirable for tumor diagnosis because they can provide more alternative and reliable information for accurate detection and therapy of diseases than single imaging technique. However, most reported conventional imaging agents have not been found to successfully overcome the disadvantages of traditional diagnoses such as sensitivity, spatial resolution, short half-decay time and complexity. Therefore, exploring a multifunctional nanocomposite with the combination of their individual modality characteristics has great impact on preoperative imaging and intraoperative diagnosis of cancer. In our study, mesoporous silica gadolinium-loaded gap-enhanced Raman tags (Gd-GERTs) specifically for preoperative and intraoperative imaging are designed and their imaging capability and biosafety are examined. They exhibit strong attenuation property for computed X-ray tomography (CT) imaging, high T1 relaxivity for magnetic resonance (MR) imaging capability and surface-enhanced Raman spectroscopy (SERS) signal with good dispersity and stability, which presents CT/MR/SERS multi-mode imaging performance of the tumor of mice within a given time. Furthermore, in vivo biodistribution and long-term toxicity studies reveal that the Gd-GERTs have good biocompatibility and bio-safety. Therefore, Gd-GERTs are of great potential as a multifunctional nanoplatform for accurate preoperative CT/MRI diagnosis and intraoperative Raman imaging-guide resection of cancers. STATEMENT OF SIGNIFICANCE: Recent advances in molecular imaging technology have provided a myriad of opportunities to prepare various nanomaterials for accurate diagnosis and response evaluation of cancer via different imaging modalities. However, single bioimaging modality is still challenging to overcome the issues such as sensitivity, spatial resolution, imaging speed and complexity for clinicians. In this work, we designed a kind of unique multifunctional nanoprobes with computed X-ray tomography/magnetic resonance/surface-enhanced Raman spectroscopy (CT/MR/SERS) triple-modal imaging capabilities. Multifunctional nanotags offer the capabilities of preoperative noninvasive CT/MR imaging for identification of tumors as well as intraoperative real-time SERS imaging for guidance of complete resection of tumors. These multifunctional nanoprobes show critical clinical significance on the improvement of tumor diagnosis and therapy.


Assuntos
Cuidados Intraoperatórios , Neoplasias/diagnóstico por imagem , Neoplasias/cirurgia , Cuidados Pré-Operatórios , Análise Espectral Raman , Animais , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Gadolínio/química , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Imagem Multimodal , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA