Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Clin Sci (Lond) ; 137(17): 1409-1429, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37655751

RESUMO

BACKGROUND: In chronic kidney disease (CKD), cardiovascular morbi-mortality is higher than in general population. Atherosclerotic cardiovascular disease is accelerated in CKD, but specific CKD-related risk factors for atherosclerosis are unknown. METHODS: CKD patients from the NEFRONA study were used. We performed mRNA array from blood of patients free from atheroma plaque at baseline, with (n=10) and without (n=10) de novo atherosclerotic plaque development 2 years later. Selected mRNA candidates were validated in a bigger sample (n=148). Validated candidates were investigated in vivo in an experimental model of CKD-accelerated atherosclerosis, and in vitro in murine macrophages. RESULTS: mRNA array analysis showed 92 up-regulated and 67 down-regulated mRNAs in samples from CKD patients with de novo plaque development. The functional analysis pointed to a paramount role of the immune response. The validation in a bigger sample confirmed that B- and T-lymphocyte co-inhibitory molecule (BTLA) down-regulation was associated with de novo plaque presence after 2 years. However, BTLA down-regulation was not found to be associated with atherosclerotic progression in patients with plaque already present at baseline. In a model of CKD-accelerated atherosclerosis, mRNA and protein expression levels of BTLA were significantly decreased in blood samples and atheroma plaques. Plaques from animals with CKD were bigger, had more infiltration of inflammatory cells, higher expression of IL6 and IL17 and less presence of collagen than plaques from control animals. Incubation of macrophages with rat uremic serum decreased BTLA expression. CONCLUSIONS: BTLA could be a potential biomarker or therapeutic target for atherosclerosis incidence in CKD patients.


Assuntos
Aterosclerose , Placa Aterosclerótica , Receptores Imunológicos , Animais , Humanos , Camundongos , Ratos , Aterosclerose/metabolismo , Regulação para Baixo , Macrófagos
2.
EBioMedicine ; 96: 104802, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37725854

RESUMO

BACKGROUND: Patients with systemic lupus erythematosus (SLE) exhibit a high risk for cardiovascular diseases (CVD) which is not fully explained by the classical Framingham risk factors. SLE is characterized by major metabolic alterations which can contribute to the elevated prevalence of CVD. METHODS: A comprehensive analysis of the circulating metabolome and lipidome was conducted in a large cohort of 211 women with SLE who underwent a multi-detector computed tomography scan for quantification of coronary artery calcium (CAC), a robust predictor of coronary heart disease (CHD). FINDINGS: Beyond traditional risk factors, including age and hypertension, disease activity and duration were independent risk factors for developing CAC in women with SLE. The presence of coronary calcium was associated with major alterations of circulating lipidome dominated by an elevated abundance of ceramides with very long chain fatty acids. Alterations in multiple metabolic pathways, including purine, arginine and proline metabolism, and microbiota-derived metabolites, were also associated with CAC in women with SLE. Logistic regression with bootstrapping of lipidomic and metabolomic variables were used to develop prognostic scores. Strikingly, combining metabolic and lipidomic variables with clinical and biological parameters markedly improved the prediction (area under the curve: 0.887, p < 0.001) of the presence of coronary calcium in women with SLE. INTERPRETATION: The present study uncovers the contribution of disturbed metabolism to the presence of coronary artery calcium and the associated risk of CHD in SLE. Identification of novel lipid and metabolite biomarkers may help stratifying patients for reducing CVD morbidity and mortality in SLE. FUNDING: INSERM and Sorbonne Université.

3.
Nat Commun ; 14(1): 4622, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528097

RESUMO

Caspase recruitment-domain containing protein 9 (CARD9) is a key signaling pathway in macrophages but its role in atherosclerosis is still poorly understood. Global deletion of Card9 in Apoe-/- mice as well as hematopoietic deletion in Ldlr-/- mice increases atherosclerosis. The acceleration of atherosclerosis is also observed in Apoe-/-Rag2-/-Card9-/- mice, ruling out a role for the adaptive immune system in the vascular phenotype of Card9 deficient mice. Card9 deficiency alters macrophage phenotype through CD36 overexpression with increased IL-1ß production, increased lipid uptake, higher cell death susceptibility and defective autophagy. Rapamycin or metformin, two autophagy inducers, abolish intracellular lipid overload, restore macrophage survival and autophagy flux in vitro and finally abolish the pro-atherogenic effects of Card9 deficiency in vivo. Transcriptomic analysis of human CARD9-deficient monocytes confirms the pathogenic signature identified in murine models. In summary, CARD9 is a key protective pathway in atherosclerosis, modulating macrophage CD36-dependent inflammatory responses, lipid uptake and autophagy.


Assuntos
Aterosclerose , Humanos , Animais , Camundongos , Aterosclerose/metabolismo , Autofagia/genética , Apolipoproteínas E/genética , Lipídeos , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL
4.
J Clin Lipidol ; 17(5): 643-658, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37550151

RESUMO

BACKGROUND: The role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in dyslipidemia may go beyond its immediate effects on low-density lipoprotein receptor (LDL-R) activity. OBJECTIVE: This study aimed to assess PCSK9-derived alterations of high-density lipoprotein (HDL) physiology, which bear a potential to contribute to cardiovascular risk profile. METHODS: HDL was isolated from 33 patients with familial autosomal dominant hypercholesterolemia (FH), including those carrying PCSK9 gain-of-function (GOF) genetic variants (FH-PCSK9, n = 11), together with two groups of dyslipidemic patients employed as controls and carrying genetic variants in the LDL-R not treated (ntFH-LDLR, n = 11) and treated (tFH-LDLR, n = 11) with statins, and 11 normolipidemic controls. Biological evaluations paralleled by proteomic, lipidomic and glycomic analyses were applied to characterize functional and compositional properties of HDL. RESULTS: Multiple deficiencies in the HDL function were identified in the FH-PCSK9 group relative to dyslipidemic FH-LDLR patients and normolipidemic controls, which involved reduced antioxidative, antiapoptotic, anti-thrombotic and anti-inflammatory activities. By contrast, cellular cholesterol efflux capacity of HDL was unchanged. In addition, multiple alterations of the proteomic, lipidomic and glycomic composition of HDL were found in the FH-PCSK9 group. Remarkably, HDLs from FH-PCSK9 patients were systematically enriched in several lysophospholipids as well as in A2G2S2 (GP13) glycan and apolipoprotein A-IV. Based on network analysis of functional and compositional data, a novel mosaic structure-function model of HDL biology involving FH was developed. CONCLUSION: Several metrics of anti-atherogenic HDL functionality are altered in FH-PCSK9 patients paralleled by distinct compositional alterations. These data provide a first-ever overview of the impact of GOF PCSK9 genetic variants on structure-function relationships in HDL.


Assuntos
Hiperlipoproteinemia Tipo II , Pró-Proteína Convertase 9 , Humanos , Pró-Proteína Convertase 9/genética , Lipoproteínas HDL/genética , Proteômica , Hiperlipoproteinemia Tipo II/genética , Relação Estrutura-Atividade , Receptores de LDL/genética , Mutação
5.
Basic Res Cardiol ; 118(1): 33, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37639039

RESUMO

While low concentrations of high-density lipoprotein-cholesterol (HDL-C) are widely accepted as an independent cardiovascular risk factor, HDL-C-rising therapies largely failed, suggesting the importance of both HDL functions and individual subspecies. Indeed HDL particles are highly heterogeneous, with small, dense pre-beta-HDLs being considered highly biologically active but remaining poorly studied, largely reflecting difficulties for their purification. We developed an original experimental approach allowing the isolation of sufficient amounts of human pre-beta-HDLs and revealing the specificity of their proteomic and lipidomic profiles and biological activities. Pre-beta-HDLs were enriched in highly poly-unsaturated species of phosphatidic acid and phosphatidylserine, and in an unexpectedly high number of proteins implicated in the inflammatory response, including serum paraoxonase/arylesterase-1, vitronectin and clusterin, as well as in complement regulation and immunity, including haptoglobin-related protein, complement proteins and those of the immunoglobulin class. Interestingly, amongst proteins associated with lipid metabolism, phospholipid transfer protein, cholesteryl ester transfer protein and lecithin:cholesterol acyltransferase were strongly enriched in, or restricted to, pre-beta-HDL. Furthermore, pre-beta-HDL potently mediated cellular cholesterol efflux and displayed strong anti-inflammatory activities. A correlational network analysis between lipidome, proteome and biological activities highlighted 15 individual lipid and protein components of pre-beta-HDL relevant to cardiovascular disease, which may constitute novel diagnostic targets in a pathological context of altered lipoprotein metabolism.


Assuntos
Doenças Cardiovasculares , Humanos , Proteômica , HDL-Colesterol , Fatores de Risco de Doenças Cardíacas , Metabolismo dos Lipídeos
7.
Nat Metab ; 4(12): 1812-1829, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36536133

RESUMO

RNA alternative splicing (AS) expands the regulatory potential of eukaryotic genomes. The mechanisms regulating liver-specific AS profiles and their contribution to liver function are poorly understood. Here, we identify a key role for the splicing factor RNA-binding Fox protein 2 (RBFOX2) in maintaining cholesterol homeostasis in a lipogenic environment in the liver. Using enhanced individual-nucleotide-resolution ultra-violet cross-linking and immunoprecipitation, we identify physiologically relevant targets of RBFOX2 in mouse liver, including the scavenger receptor class B type I (Scarb1). RBFOX2 function is decreased in the liver in diet-induced obesity, causing a Scarb1 isoform switch and alteration of hepatocyte lipid homeostasis. Our findings demonstrate that specific AS programmes actively maintain liver physiology, and underlie the lipotoxic effects of obesogenic diets when dysregulated. Splice-switching oligonucleotides targeting this network alleviate obesity-induced inflammation in the liver and promote an anti-atherogenic lipoprotein profile in the blood, underscoring the potential of isoform-specific RNA therapeutics for treating metabolism-associated diseases.


Assuntos
Processamento Alternativo , Proteínas de Ligação a RNA , Camundongos , Animais , Processamento Alternativo/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA/genética , Fígado/metabolismo , Homeostase , Colesterol/metabolismo , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo
8.
iScience ; 25(10): 105066, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36093378

RESUMO

Patients with severe COVID-19 show an altered immune response that fails to control the viral spread and suffer from exacerbated inflammatory response, which eventually can lead to death. A major challenge is to develop an effective treatment for COVID-19. NF-κB is a major player in innate immunity and inflammatory process. By a high-throughput screening approach, we identified FDA-approved compounds that inhibit the NF-κB pathway and thus dampen inflammation. Among these, we show that Auranofin prevents post-translational modifications of NF-κB effectors and their recruitment into activating complexes in response to SARS-CoV-2 infection or cytokine stimulation. In addition, we demonstrate that Auranofin counteracts several steps of SARS-CoV-2 infection. First, it inhibits a raft-dependent endocytic pathway involved in SARS-CoV-2 entry into host cells; Second, Auranofin alters the ACE2 mobility at the plasma membrane. Overall, Auranofin should prevent SARS-CoV-2 infection and inflammatory damages, offering new opportunities as a repurposable drug candidate to treat COVID-19.

9.
FASEB J ; 36(5): e22274, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35416331

RESUMO

Phosphatidylserine (PS) is a minor phospholipid constituent of high-density lipoprotein (HDL) that exhibits potent anti-inflammatory activity. It remains indeterminate whether PS incorporation can enhance anti-inflammatory effects of reconstituted HDL (rHDL). Human macrophages were treated with rHDL containing phosphatidylcholine alone (PC-rHDL) or PC and PS (PC/PS-rHDL). Interleukin (IL)-6 secretion and expression was more strongly inhibited by PC/PS-rHDL than PC-rHDL in both tumor necrosis factor (TNF)-α- and lipopolysaccharide (LPS)-stimulated macrophages. siRNA experiments revealed that the enhanced anti-inflammatory effects of PC/PS-rHDL required scavenger receptor class B type I (SR-BI). Furthermore, PC/PS-rHDL induced a greater increase in Akt1/2/3 phosphorylation than PC-rHDL. In addition, PC/PS but not PC-rHDL decreased the abundance of plasma membrane lipid rafts and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation. Finally, when these rHDL formulations were administered to dyslipidemic low-density lipoprotein (LDL)-receptor knockout mice fed a high-cholesterol diet, circulating IL-6 levels were significantly reduced only in PC/PS-rHDL-treated mice. In parallel, enhanced Akt1/2/3 phosphorylation by PC/PS-rHDL was observed in the mouse aortic tissue using immunohistochemistry. We concluded that the incorporation of PS into rHDLs enhanced their anti-inflammatory activity by modulating Akt1/2/3- and p38 MAPK-mediated signaling through SR-BI in stimulated macrophages. These data identify PS as a potent anti-inflammatory component capable of enhancing therapeutic potential of rHDL-based therapy.


Assuntos
Lipoproteínas HDL , Fosfatidilserinas , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Espaço Intracelular/metabolismo , Lipoproteínas HDL/metabolismo , Macrófagos/metabolismo , Camundongos , Fosfatidilserinas/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Haematologica ; 107(6): 1347-1357, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34647443

RESUMO

Erdheim-Chester disease (ECD) is a rare, systemic, non-Langerhans cell histiocytosis neoplasm, which is characterized by the infiltration of CD63+ CD1a- histiocytes in multiple tissues. The BRAFV600E mutation is frequently present in individuals with ECD and has been detected in hematopoietic stem cells and immune cells from the myeloid and systemic compartments. Immune cells and pro-inflammatory cytokines are present in lesions, suggesting that ECD involves immune cell recruitment. Although a systemic cytokine T-helper-1-oriented signature has been reported in ECD, the immune cell network orchestrating the immune response in ECD has yet to be described. To address this issue, the phenotypes of circulating leukocytes were investigated in a large, single-center cohort of 78 patients with ECD and compared with those of a group of 21 control individuals. Major perturbations in the abundance of systemic immune cells were detected in patients with ECD, with decreases in circulating plasmacytoid, myeloid 1, and myeloid 2 dendritic cells, mostly in BRAFV600E carriers, in comparison with individuals in the control group. Similarly, marked decreases in blood Thelper, cytotoxic, and B-lymphocyte numbers were observed in patients with ECD, relative to the control group. Measurement of circulating immunoglobulin concentrations revealed an immunoglobulin G switch, from IgG1 to IgG4 subclasses, which are more frequently associated with the BRAF mutation. First-line therapies, including pegylated interferon-a and vemurafenib, were able to correct most of these alterations. This study reveals a profound disturbance in the systemic immune phenotype in patients with ECD, providing important new information, helping to understand the physiopathological mechanisms involved in this rare disease and improving the therapeutic management of patients.


Assuntos
Doença de Erdheim-Chester , Citocinas/genética , Doença de Erdheim-Chester/diagnóstico , Doença de Erdheim-Chester/tratamento farmacológico , Doença de Erdheim-Chester/genética , Humanos , Imunoglobulina G , Fenótipo , Proteínas Proto-Oncogênicas B-raf/genética , Vemurafenib/uso terapêutico
11.
Atherosclerosis ; 324: 1-8, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33798922

RESUMO

BACKGROUND AND AIMS: While low concentrations of high-density lipoprotein-cholesterol (HDL-C) represent a well-established cardiovascular risk factor, extremely high HDL-C is paradoxically associated with elevated cardiovascular risk, resulting in the U-shape relationship with cardiovascular disease. Free cholesterol transfer to HDL upon lipolysis of triglyceride-rich lipoproteins (TGRL) was recently reported to underlie this relationship, linking HDL-C to triglyceride metabolism and atherosclerosis. In addition to free cholesterol, other surface components of TGRL, primarily phospholipids, are transferred to HDL during lipolysis. It remains indeterminate as to whether such transfer is linked to HDL-C and cardiovascular disease. METHODS AND RESULTS: When TGRL was labelled with fluorescent phospholipid 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), time- and dose-dependent transfer of DiI to HDL was observed upon incubations with lipoprotein lipase (LPL). The capacity of HDL to acquire DiI was decreased by -36% (p<0.001) in low HDL-C patients with acute myocardial infarction (n = 22) and by -95% (p<0.001) in low HDL-C subjects with Tangier disease (n = 7), unchanged in low HDL-C patients with Type 2 diabetes (n = 17) and in subjects with high HDL-C (n = 20), and elevated in subjects with extremely high HDL-C (+11%, p<0.05) relative to healthy normolipidemic controls. Across all the populations combined, HDL capacity to acquire DiI was directly correlated with HDL-C (r = 0.58, p<0.001). No relationship of HDL capacity to acquire DiI with both overall and cardiovascular mortality obtained from epidemiological studies for the mean HDL-C levels observed in the studied populations was obtained. CONCLUSIONS: These data indicate that the capacity of HDL to acquire phospholipid from TGRL upon LPL-mediated lipolysis is proportional to HDL-C and does not reflect cardiovascular risk in subjects widely differing in HDL-C levels.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Doenças Cardiovasculares/diagnóstico , Colesterol , Fatores de Risco de Doenças Cardíacas , Humanos , Lipólise , Lipase Lipoproteica/metabolismo , Lipoproteínas HDL/metabolismo , Fosfolipídeos , Fatores de Risco , Triglicerídeos
12.
Cell Rep Med ; 1(9): 100154, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33377125

RESUMO

Plasma dihydroceramides are predictors of type 2 diabetes and related to metabolic dysfunctions, but the underlying mechanisms are not characterized. We compare the relationships between plasma dihydroceramides and biochemical and hepatic parameters in two cohorts of diabetic patients. Hepatic steatosis, steatohepatitis, and fibrosis are assessed by their plasma biomarkers. Plasma lipoprotein sphingolipids are studied in a sub-group of diabetic patients. Liver biopsies from subjects with suspected non-alcoholic fatty liver disease are analyzed for sphingolipid synthesis enzyme expression. Dihydroceramides, contained in triglyceride-rich very-low-density lipoprotein (VLDL), are associated with steatosis and steatohepatitis. Expression of sphingolipid synthesis enzymes is correlated with histological steatosis and inflammation grades. In conclusion, association of plasma dihydroceramides with nonalcoholic fatty liver might explain their predictive character for type 2 diabetes. Our results suggest a relationship between hepatic sphingolipid metabolism and steatohepatitis and an involvement of dihydroceramides in the synthesis/secretion of triglyceride-rich VLDL, a hallmark of NAFLD and type 2 diabetes dyslipidemia.


Assuntos
Ceramidas/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ceramidas/metabolismo , Diabetes Mellitus Tipo 2/complicações , Humanos , Resistência à Insulina/fisiologia , Lipoproteínas VLDL/sangue , Lipoproteínas VLDL/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Triglicerídeos/sangue , Triglicerídeos/metabolismo
13.
Nutrients ; 12(11)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228154

RESUMO

Bile acids (BAs) regulate dietary lipid hydrolysis and absorption in the proximal intestine. Several studies have highlighted a determinant role of circulating levels and/or metabolism of BAs in the pathogenesis of major cardiometabolic diseases. Whether changes in BA profiles are causative or are consequence of these diseases remains to be determined. Healthy male volunteers (n = 71) underwent a postprandial exploration following consumption of a hypercaloric high fat typical Western meal providing 1200 kcal. We investigated variations of circulating levels of 28 BA species, together with BA synthesis marker 7α-hydroxy-4-cholesten-3-one (C4) over an approximately diurnal 12 h period. Analysis of BA variations during the postprandial time course revealed two major phenotypes with opposite fluctuations, i.e., circulating levels of each individual species of unconjugated BAs were reduced after meal consumption whereas those of tauro- and glyco-conjugated BAs were increased. By an unbiased classification strategy based on absolute postprandial changes in BA species levels, we classified subjects into three distinct clusters; the two extreme clusters being characterized by the smallest absolute changes in either unconjugated-BAs or conjugated-BAs. Finally, we demonstrated that our clustering based on postprandial changes in BA profiles was associated with specific clinical and biochemical features, including postprandial triglyceride levels, BMI or waist circumference. Altogether, our study reveals that postprandial profiles/patterns of BAs in response to a hypercaloric high fat challenge is associated with healthy or unhealthy metabolic phenotypes that may help in the early identification of subjects at risk of developing metabolic disorders.


Assuntos
Ácidos e Sais Biliares/sangue , Dieta Ocidental , Período Pós-Prandial , Adolescente , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
14.
Sci Rep ; 10(1): 18434, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116219

RESUMO

Dyslipidemia is the primary cause of cardiovascular disease, which is a serious human health problem in large parts of the world. Therefore, it is important to understand the genetic and molecular mechanisms that regulate blood levels of cholesterol and other lipids. Discovery of genetic elements in the regulatory machinery is often based on genome wide associations studies (GWAS) focused on end-point phenotypes such as total cholesterol level or a disease diagnosis. In the present study, we add endophenotypes, such as serum levels of intermediate metabolites in the cholesterol synthesis pathways, to a GWAS analysis and use the pig as an animal model. We do this to increase statistical power and to facilitate biological interpretation of results. Although the study population was limited to ~ 300 individuals, we identify two genome-wide significant associations and ten suggestive associations. Furthermore, we identify 28 tentative associations to loci previously associated with blood lipids or dyslipidemia associated diseases. The associations with endophenotypes may inspire future studies that can dissect the biological mechanisms underlying these previously identified associations and add a new level of understanding to previously identified associations.


Assuntos
Colesterol/sangue , Dislipidemias/genética , Endofenótipos , Estudo de Associação Genômica Ampla , Triglicerídeos/sangue , Animais , Doenças Cardiovasculares/genética , Feminino , Masculino , Suínos
15.
Sci Rep ; 10(1): 13509, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782257

RESUMO

Sporozoite forms of the Plasmodium parasite, the causative agent of malaria, are transmitted by mosquitoes and first infect the liver for an initial round of replication before parasite proliferation in the blood. The molecular mechanisms involved during sporozoite invasion of hepatocytes remain poorly understood. Two receptors of the Hepatitis C virus (HCV), the tetraspanin CD81 and the scavenger receptor class B type 1 (SR-B1), play an important role during the entry of Plasmodium sporozoites into hepatocytes. In contrast to HCV entry, which requires both CD81 and SR-B1 together with additional host factors, CD81 and SR-B1 operate independently during malaria liver infection. Sporozoites from human-infecting P. falciparum and P. vivax rely respectively on CD81 or SR-B1. Rodent-infecting P. berghei can use SR-B1 to infect host cells as an alternative pathway to CD81, providing a tractable model to investigate the role of SR-B1 during Plasmodium liver infection. Here we show that mouse SR-B1 is less functional as compared to human SR-B1 during P. berghei infection. We took advantage of this functional difference to investigate the structural determinants of SR-B1 required for infection. Using a structure-guided strategy and chimeric mouse/human SR-B1 constructs, we could map the functional region of human SR-B1 within apical loops, suggesting that this region of the protein may play a crucial role for interaction of sporozoite ligands with host cells and thus the very first step of Plasmodium infection.


Assuntos
Antígenos CD36/metabolismo , Hepatócitos/metabolismo , Hepatócitos/parasitologia , Plasmodium/fisiologia , Esporozoítos/fisiologia , Sequência de Aminoácidos , Animais , Antígenos CD36/química , Humanos , Camundongos , Modelos Moleculares , Domínios Proteicos , Tetraspanina 28/metabolismo
16.
J Am Coll Cardiol ; 76(15): 1763-1773, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32861811

RESUMO

BACKGROUND: Inhibition of the interleukin (IL)-1ß innate immunity pathway is associated with anti-inflammatory effects and a reduced risk of recurrent cardiovascular events in stable patients with previous myocardial infarction (MI) and elevated high-sensitivity C-reactive protein (hs-CRP). OBJECTIVES: This study assessed the association between IL-1ß level with all-cause mortality in patients with acute ST-segment elevation MI who underwent primary percutaneous coronary intervention and the interplay between IL-1ß and hs-CRP concentrations on the risk of premature death. METHODS: IL-1ß concentration was measured in 1,398 patients with ST-segment elevation MI who enrolled in a prospective cohort. Crude and hazard ratios for all-cause and cardiovascular mortality were analyzed at 90 days and 1 year using multivariate Cox proportional regression analysis. Major adverse cardiovascular events (MACEs) were analyzed. RESULTS: IL-1ß concentration measured at admission was associated with all-cause mortality at 90 days (adjusted hazard ratio [adjHR]: 1.47 per 1 SD increase; 95% confidence interval [CI]: 1.16 to 1.87; p < 0.002). The relation was nonlinear, and the highest tertile of IL-1ß was associated with higher mortality rates at 90 days (adjHR: 2.78; 95% CI: 1.61 to 4.79; p = 0.0002) and at 1 year (adjHR: 1.93; 95% CI: 1.21 to 3.06; p = 0.005), regardless of the hs-CRP concentration. Significant relationships were equally observed when considering cardiovascular mortality and MACEs at 90 days (adjHR: 2.42; 95% CI: 1.36 to 4.28; p = 0.002, and adjHR: 2.29; 95% CI: 1.31 to 4.01; p = 0.004, respectively) and at 1 year (adjHR: 2.32; 95% CI: 1.36 to 3.97; p = 0.002, and adjHR: 2.35; 95% CI: 1.39 to 3.96; p = 0.001, respectively). CONCLUSIONS: IL-1ß measured at admission in patients with acute MI was independently associated with the risk of mortality and recurrent MACEs.


Assuntos
Interleucina-18/sangue , Infarto do Miocárdio/mortalidade , Medição de Risco/métodos , Idoso , Biomarcadores/sangue , Angiografia Coronária , Feminino , Seguimentos , França/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Mortalidade Prematura/tendências , Infarto do Miocárdio/sangue , Infarto do Miocárdio/diagnóstico , Estudos Prospectivos , Fatores de Risco , Taxa de Sobrevida/tendências
17.
Biomolecules ; 10(5)2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466286

RESUMO

Elevation of nonfasting triglyceride (TG) levels above 1.8 g/L (2 mmol/L) is associated with increased risk of cardiovascular diseases. Exacerbated postprandial hypertriglyceridemia (PP-HTG) and metabolic context both modulate the overall efficacy of the reverse cholesterol transport (RCT) pathway, but the specific contribution of exaggerated PP-HTG on RCT efficacy remains indeterminate. Healthy male volunteers (n = 78) exhibiting no clinical features of metabolic disorders underwent a postprandial exploration following consumption of a typical Western meal providing 1200 kcal. Subjects were stratified according to maximal nonfasting TG levels reached after ingestion of the test meal into subjects with a desirable PP-TG response (GLow, TG < 1.8 g/L, n = 47) and subjects with an undesirable PP-TG response (GHigh, TG > 1.8 g/L, n = 31). The impact of the degree of PP-TG response on major steps of RCT pathway, including cholesterol efflux from human macrophages, cholesteryl ester transfer protein (CETP) activity, and hepatic high-density lipoprotein (HDL)-cholesteryl ester (CE) selective uptake, was evaluated. Cholesterol efflux from human macrophages was not significantly affected by the degree of the PP-TG response. Postprandial increase in CETP-mediated CE transfer from HDL to triglyceride-rich lipoprotein particles, and more specifically to chylomicrons, was enhanced in GHigh vs GLow. The hepatic HDL-CE delivery was reduced in subjects from GHigh in comparison with those from GLow. Undesirable PP-TG response induces an overall reduction in RCT efficacy that contributes to the onset elevation of both fasting and nonfasting TG levels and to the development of cardiometabolic diseases.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Colesterol/metabolismo , Hipertrigliceridemia/metabolismo , Período Pós-Prandial , Triglicerídeos/metabolismo , Adulto , Ésteres do Colesterol/metabolismo , Quilomícrons/metabolismo , Humanos , Lipoproteínas HDL/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Triglicerídeos/sangue
18.
Front Pharmacol ; 11: 278, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308619

RESUMO

Disruption in cholesterol metabolism, particularly hypercholesterolemia, is a significant cause of atherosclerotic cardiovascular disease. Large interindividual variations in plasma cholesterol levels are traditionally related to genetic factors, and the remaining portion of their variance is accredited to environmental factors. In recent years, the essential role played by intestinal microbiota in human health and diseases has emerged. The gut microbiota is currently viewed as a fundamental regulator of host metabolism and of innate and adaptive immunity. Its bacterial composition but also the synthesis of multiple molecules resulting from bacterial metabolism vary according to diet, antibiotics, drugs used, and exposure to pollutants and infectious agents. Microbiota modifications induced by recent changes in the human environment thus seem to be a major factor in the current epidemic of metabolic/inflammatory diseases (diabetes mellitus, liver diseases, inflammatory bowel disease, obesity, and dyslipidemia). Epidemiological and preclinical studies report associations between bacterial communities and cholesterolemia. However, such an association remains poorly investigated and characterized. The objectives of this review are to present the current knowledge on and potential mechanisms underlying the host-microbiota dialogue for a better understanding of the contribution of microbial communities to the regulation of cholesterol homeostasis.

19.
Eur J Prev Cardiol ; 27(15): 1606-1616, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31840535

RESUMO

BACKGROUND: Low concentrations of high-density lipoprotein cholesterol (HDL-C) represent a well-established cardiovascular risk factor. Paradoxically, extremely high HDL-C levels are equally associated with elevated cardiovascular risk, resulting in the U-shape relationship of HDL-C with cardiovascular disease. Mechanisms underlying this association are presently unknown. We hypothesised that the capacity of high-density lipoprotein (HDL) to acquire free cholesterol upon triglyceride-rich lipoprotein (TGRL) lipolysis by lipoprotein lipase underlies the non-linear relationship between HDL-C and cardiovascular risk. METHODS: To assess our hypothesis, we developed a novel assay to evaluate the capacity of HDL to acquire free cholesterol (as fluorescent TopFluor® cholesterol) from TGRL upon in vitro lipolysis by lipoprotein lipase. RESULTS: When the assay was applied to several populations markedly differing in plasma HDL-C levels, transfer of free cholesterol was significantly decreased in low HDL-C patients with acute myocardial infarction (-45%) and type 2 diabetes (-25%), and in subjects with extremely high HDL-C of >2.59 mmol/L (>100 mg/dL) (-20%) versus healthy normolipidaemic controls. When these data were combined and plotted against HDL-C concentrations, an inverse U-shape relationship was observed. Consistent with these findings, animal studies revealed that the capacity of HDL to acquire cholesterol upon lipolysis was reduced in low HDL-C apolipoprotein A-I knock-out mice and was negatively correlated with aortic accumulation of [3H]-cholesterol after oral gavage, attesting this functional characteristic as a negative metric of postprandial atherosclerosis. CONCLUSIONS: Free cholesterol transfer to HDL upon TGRL lipolysis may underlie the U-shape relationship between HDL-C and cardiovascular disease, linking HDL-C to triglyceride metabolism and atherosclerosis.


Assuntos
Aorta Torácica/metabolismo , Doenças Cardiovasculares/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Lipólise/fisiologia , Lipoproteínas HDL/metabolismo , Triglicerídeos/metabolismo , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Lipase Lipoproteica/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Período Pós-Prandial
20.
J Inherit Metab Dis ; 43(3): 611-617, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31800099

RESUMO

The importance of protein glycosylation in regulating lipid metabolism is becoming increasingly apparent. We set out to further investigate this by studying the effects of defective glycosylation on plasma lipids in patients with B4GALT1-CDG, caused by a mutation in B4GALT1 with defective N-linked glycosylation. We studied plasma lipids, cholesteryl ester transfer protein (CETP) glyco-isoforms with isoelectric focusing followed by a western blot and CETP activity in three known B4GALT1-CDG patients and compared them with 11 age- and gender-matched, healthy controls. B4GALT1-CDG patients have significantly lowered non-high density lipoprotein cholesterol (HDL-c) and total cholesterol to HDL-c ratio compared with controls and larger HDL particles. Plasma CETP was hypoglycosylated and less active in B4GALT1-CDG patients compared to matched controls. Our study provides insight into the role of protein glycosylation in human lipoprotein homeostasis. The hypogalactosylated, hypo-active CETP found in patients with B4GALT1-CDG indicates a role of protein galactosylation in regulating plasma HDL and LDL. Patients with B4GALT1-CDG have large HDL particles probably due to hypogalactosylated, hypo-active CETP.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/metabolismo , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Defeitos Congênitos da Glicosilação/genética , Galactosiltransferases/genética , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Proteínas de Transferência de Ésteres de Colesterol/genética , Defeitos Congênitos da Glicosilação/metabolismo , Feminino , Glicosilação , Homozigoto , Humanos , Lactente , Masculino , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA