Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Fitoterapia ; 175: 105959, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615754

RESUMO

Lysimachia capillipes Hemsl., a traditional Chinese medicine (TCM), is commonly prescribed for its anti-inflammatory and anti-tumor properties. Pharmacological studies have demonstrated that Lysimachia capillipes Hemsl. saponins (LCS) are the primary bioactive component. However, its mechanism for treating colorectal cancer (CRC) is still unknown. Increasing evidence suggests a close relationship between CRC, intestinal flora, and host metabolism. Thus, this study aims to investigate the mechanism of LCS amelioration of CRC from the perspective of the gut microbiome and metabolome. As a result, seven gut microbiotas and fourteen plasma metabolites were significantly altered between the control and model groups. Among them, one gut microbiota genera (Monoglobus) and six metabolites (Ureidopropionic acid, Cytosine, L-Proline, 3-hydroxyanthranilic acid, Cyclic AMP and Suberic acid) showed the most pronounced callback trend after LCS administration. Subsequently, the correlation analysis revealed significant associations between 68 pairs of associated metabolites and gut microbes, with 13 pairs of strongly associated metabolites regulated by the LCS. Taken together, these findings indicate that the amelioration of CRC by LCS is connected to the regulation of intestinal flora and the recasting of metabolic abnormalities. These insights highlight the potential of LCS as a candidate drug for the treatment of CRC.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Primulaceae , Saponinas , Saponinas/farmacologia , Saponinas/isolamento & purificação , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Camundongos , Primulaceae/química , Neoplasias Colorretais/tratamento farmacológico , Masculino , Metaboloma/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Lysimachia
2.
Front Pharmacol ; 15: 1361643, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549666

RESUMO

Introduction: Some herbal ingredients can reshape the composition of the gut microbiome as well as its metabolites. At the same time, the gut microbiota can also affect drug metabolism. A large number of studies have reported that saponins are biotransformed under the action of intestinal microorganisms to improve drug efficacy and bioavailability. Capilliposide A is a triterpenoid saponin, which is derived from Lysimachia capillipes Hemsl. CPS-A has anti-inflammatory pharmacological activity, but the substance basis in vivo is unknown at present, so studies on the interaction between intestinal microorganisms and CPS-A may clarify the pharmacodynamic substance basis of CPS-A. Methods: This study established a colitis mouse model, collected sterile feces from normal mice and colitis mice, and incubated CPS-A with two different intestinal flora in vitro. Based on LC-MS, the metabolic process of CPS-A mediated by intestinal microbes and the intervention effect of CPS-A on intestinal microbiome derived metabolites were studied. Results: The results of experiments indicate that intestinal microorganisms can mediate the biotransformation of CPS-A and metabolize it into corresponding deglycosylation products, thereby promoting its drug effect. Not only that, CPS-A can also promote metabolites such as Deoxycholic acid, Histamine, 3-Hydroxytridecanoic acid, and Indole-3-acetic acid in the intestinal microbiota of mice with colitis. This may result in anti-colitis effects. CPS-A mainly involved in metabolic pathways such as azathioprine and mercaptopurine, which may also have beneficial or adverse effects. Discussion: This study on the interaction between CPS-A and microbiota provides a new idea for the study of traditional Chinese medicine with poor oral bioavailability. The regulatory effect of CPS-A on the metabolites of intestinal flora in colitis mice was also found. It laid a foundation for exploring the mechanism of action of saponins on colitis mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA