Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Neural Netw ; 175: 106315, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38626618

RESUMO

Pre-trained Language Model (PLM) is nowadays the mainstay of Unsupervised Sentence Representation Learning (USRL). However, PLMs are sensitive to the frequency information of words from their pre-training corpora, resulting in anisotropic embedding space, where the embeddings of high-frequency words are clustered but those of low-frequency words disperse sparsely. This anisotropic phenomenon results in two problems of similarity bias and information bias, lowering the quality of sentence embeddings. To solve the problems, we fine-tune PLMs by leveraging the frequency information of words and propose a novel USRL framework, namely Sentence Representation Learning with Frequency-induced Adversarial tuning and Incomplete sentence filtering (Slt-fai). We calculate the word frequencies over the pre-training corpora of PLMs and assign words thresholding frequency labels. With them, (1) we incorporate a similarity discriminator used to distinguish the embeddings of high-frequency and low-frequency words, and adversarially tune the PLM with it, enabling to achieve uniformly frequency-invariant embedding space; and (2) we propose a novel incomplete sentence detection task, where we incorporate an information discriminator to distinguish the embeddings of original sentences and incomplete sentences by randomly masking several low-frequency words, enabling to emphasize the more informative low-frequency words. Our Slt-fai is a flexible and plug-and-play framework, and it can be integrated with existing USRL techniques. We evaluate Slt-fai with various backbones on benchmark datasets. Empirical results indicate that Slt-fai can be superior to the existing USRL baselines.


Assuntos
Idioma , Aprendizado de Máquina não Supervisionado , Humanos , Redes Neurais de Computação , Processamento de Linguagem Natural , Algoritmos
2.
J Adv Res ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38555000

RESUMO

BACKGROUND: Atherosclerosis is a chronic and complex disease caused by lipid disorder, inflammation, and other factors. It is closely related to cardiovascular diseases, the chief cause of death globally. Peroxisome proliferator-activated receptors (PPARs) are valuable anti-atherosclerosis targets that showcase multiple roles at different pathological stages of atherosclerosis and for cell types at different tissue sites. AIM OF REVIEW: Considering the spatial and temporal characteristics of the pathological evolution of atherosclerosis, the roles and pharmacological and clinical studies of PPARs were summarized systematically and updated under different pathological stages and in different vascular cells of atherosclerosis. Moreover, selective PPAR modulators and PPAR-pan agonists can exert their synergistic effects meanwhile reducing the side effects, thereby providing novel insight into future drug development for precise spatial-temporal therapeutic strategy of anti-atherosclerosis targeting PPARs. KEY SCIENTIFIC: Concepts of Review: Based on the spatial and temporal characteristics of atherosclerosis, we have proposed the importance of stage- and cell type-dependent precision therapy. Initially, PPARs improve endothelial cells' dysfunction by inhibiting inflammation and oxidative stress and then regulate macrophages' lipid metabolism and polarization to improve fatty streak. Finally, PPARs reduce fibrous cap formation by suppressing the proliferation and migration of vascular smooth muscle cells (VSMCs). Therefore, research on the cell type-specific mechanisms of PPARs can provide the foundation for space-time drug treatment. Moreover, pharmacological studies have demonstrated that several drugs or compounds can exert their effects by the activation of PPARs. Selective PPAR modulators (that specifically activate gene subsets of PPARs) can exert tissue and cell-specific effects. Furthermore, the dual- or pan-PPAR agonist could perform a better role in balancing efficacy and side effects. Therefore, research on cells/tissue-specific activation of PPARs and PPAR-pan agonists can provide the basis for precision therapy and drug development of PPARs.

3.
Plant Cell Environ ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517937

RESUMO

Bainong sterility (BNS) is a thermo-sensitive genic male sterile wheat line, characterised by anther fertility transformation in response to low temperature (LT) stress during meiosis, the failure of vacuole decomposition and the absence of starch accumulation in sterile bicellular pollen. Our study demonstrates that the late microspore (LM) stage marks the transition from the anther growth to anther maturation phase, characterised by the changes in anther structure, carbohydrate metabolism and the main transport pathway of sucrose (Suc). Fructan is a main storage polysaccharide in wheat anther, and its synthesis and remobilisation are crucial for anther development. Moreover, the process of pollen amylogenesis and the fate of the large vacuole in pollen are closely intertwined with fructan synthesis and remobilisation. LT disrupts the normal physiological metabolism of BNS anthers during meiosis, particularly affecting carbohydrate metabolism, thus determining the fate of male gametophytes and pollen abortion. Disruption of fructan synthesis and remobilisation regulation serves as a decisive event that results in anther abortion. Sterile pollen exhibits common traits of pollen starvation and impaired starch accumulation due to the inhibition of apoplastic transport starting from the LM stage, which is regulated by cell wall invertase TaIVR1 and Suc transporter TaSUT1.

4.
Nat Commun ; 14(1): 8464, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123554

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) is a crucial regulator of cell growth. It senses nutrient signals and adjusts cellular metabolism accordingly. Deregulation of mTORC1 has been associated with metabolic diseases, cancer, and aging. Amino acid signals are transduced to mTORC1 through sensor proteins and two protein complexes named GATOR1 and GATOR2. In this study, we identify VWCE (von Willebrand factor C and EGF domains) as a negative regulator of amino acid-dependent mTORC1 signaling. Knockdown of VWCE promotes mTORC1 activity even in the absence of amino acids. VWCE interacts with the KICSTOR complex to facilitate the recruitment of GATOR1 to the lysosomes. Bioinformatic analysis reveals that expression of VWCE is reduced in prostate cancer. More importantly, overexpression of VWCE inhibits the development of prostate cancer. Therefore, VWCE may serve as a potential therapeutic target for the treatment of prostate cancers.


Assuntos
Aminoácidos , Neoplasias da Próstata , Masculino , Humanos , Aminoácidos/metabolismo , Transdução de Sinais , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Lisossomos/metabolismo
5.
Plants (Basel) ; 12(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37687344

RESUMO

MicroRNA (miRNA) plays a crucial role in the interactions between plants and pathogens, and identifying disease-related miRNAs could help us understand the mechanisms underlying plant disease pathogenesis and breed resistant varieties. However, the role of miRNA in wheat defense responses remains largely unexplored. The miR397 family is highly conserved in plants and involved in plant development and defense response. Therefore, the purpose of this study was to investigate the function of tae-miR397 in wheat resistance to powdery mildew. The expression pattern analysis revealed that tae-miR397 expression was higher in young leaves than in other tissues and was significantly decreased in wheat Bainong207 leaves after Blumeria graminis (Bgt) infection and chitin treatment. Additionally, the expression of tae-miR397 was significantly down-regulated by salicylic acid and induced under jasmonate treatment. The overexpression of tae-miR397 in common wheat Bainong207 enhanced the wheat's susceptibility to powdery mildew in the seedling and adult stages. The rate of Bgt spore germination and mycelial growth in transgenic wheat plants overexpressing tae-miR397 was faster than in the untransformed wild-type plants. The target gene of tae-miR397 was predicted to be a wound-induced protein (Tae-WIP), and the function was investigated. We demonstrated that silencing of Tae-WIP via barley-stripe-mosaic-virus-induced gene silencing enhanced wheat's susceptibility to powdery mildew. qRT-PCR indicated that tae-miR397 regulated wheat immunity by controlling pathogenesis-related gene expressions. Moreover, the transgenic plants overexpressing tae-miR397 exhibited more tillers than the wild-type plants. This work suggests that tae-miR397 is a negative regulator of resistance against powdery mildew and has great potential for breeding disease-resistant cultivars.

6.
Neural Netw ; 167: 199-212, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37659116

RESUMO

Transparent objects widely exist in the world. The task of transparent object segmentation is challenging as the object lacks its own texture. The cue of shape information therefore gets more critical. Most existing methods, however, rely on the mechanism of simple convolution, which is good at local cues and performs weakly on global cues like shape. To solve this problem, an operation named Patch-wise Weight Shuffle is proposed to bring in the global context cue by being combined with the dynamic convolution. A network ShuffleTrans that recognizes shape better is then designed based on this operation. Besides, fitter for this task, two auxiliary modules are presented in ShuffleTrans: a Boundary and Direction Refinement Module which collects two additional information, and a Channel Attention Enhancement Module that assists the above operation. Experiments on four texture-less object segmentation datasets and two normal datasets verify the effectiveness and generality of the method. Especially, the ShuffleTrans achieved 74.93% mIoU on the Trans10k v2 test set, which is more accurate than existing methods.


Assuntos
Sinais (Psicologia) , Processamento de Imagem Assistida por Computador
7.
Gene ; 888: 147756, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37659597

RESUMO

Alternative oxidase (AOX) is an important terminal oxidase involved in the alternative oxidation pathway in plants, which is closely related to various biotic and abiotic stress responses. However, a comprehensive research on AOX gene family of wheat is still lacking. In this study, the members of wheat AOX (TaAOX) family were identified, and their molecular characteristics and gene expression patterns were systematically investigated. Seventeen TaAOX genes were identified from Chinese Spring (CS) genome, which were mapped on 7 chromosomes and mainly clustered on the long arm's distal end of the second homologous groups. Phylogenetic analysis showed that TaAOX genes were classified into four subgroups (Ia, Ib, Ic, and Id), and the Ia subgroup possessed the most members. Tandem duplication and segmental duplication events were found during the evolution of TaAOX genes and they were affected by purifying selection demonstrated by Ka/Ks analysis. The exon numbers of this family gene varied greatly from 1 to 9. Except for Ta3BSAOX14, all the proteins encoded by the other 16 TaAOX genes contained the amino acid residues of the key active sites in the AOX domain (cd01053). The expression patterns of TaAOX genes in various tissues and under abiotic and biotic stresses were analyzed using public transcriptome data, furthermore, qRT-PCR analysis was performed for some selected TaAOX genes, and the results suggested that most members of this gene family play an important role in response to different stresses in common wheat. Our results provide basic information and valuable reference for further exploring the gene function of TaAOX family by using gene editing, RNAi, VIGS, and other technologies.


Assuntos
Genoma de Planta , Triticum , Triticum/metabolismo , Perfilação da Expressão Gênica/métodos , Filogenia , Família Multigênica , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
8.
Mol Cell ; 83(16): 3027-3040.e11, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37541260

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) regulates metabolism and cell growth in response to nutrient levels. Dysregulation of mTORC1 results in a broad spectrum of diseases. Glucose is the primary energy supply of cells, and therefore, glucose levels must be accurately conveyed to mTORC1 through highly responsive signaling mechanisms to control mTORC1 activity. Here, we report that glucose-induced mTORC1 activation is regulated by O-GlcNAcylation of Raptor, a core component of mTORC1, in HEK293T cells. Mechanistically, O-GlcNAcylation of Raptor at threonine 700 facilitates the interactions between Raptor and Rag GTPases and promotes the translocation of mTOR to the lysosomal surface, consequently activating mTORC1. In addition, we show that AMPK-mediated phosphorylation of Raptor suppresses Raptor O-GlcNAcylation and inhibits Raptor-Rags interactions. Our findings reveal an exquisitely controlled mechanism, which suggests how glucose coordinately regulates cellular anabolism and catabolism.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Complexos Multiproteicos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Células HEK293 , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexos Multiproteicos/metabolismo , Proteína Regulatória Associada a mTOR/genética , Proteína Regulatória Associada a mTOR/metabolismo , Fosforilação
9.
Heliyon ; 9(6): e17339, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37389043

RESUMO

Aims: The objectives of this study were to identify clinical predictors of the Traditional Chinese medicine (TCM) clinical index for diabetic peripheral neuropathy (DPN) in type 2 diabetes mellitus (T2DM) patients, develop a clinical prediction model, and construct a nomogram. Methods: We collected the TCM clinical index from 3590 T2DM recruited at the Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine from January 2019 to October 2020. The participants were randomly assigned to either the training group (n = 3297) or the validation group (n = 1426). TCM symptoms and tongue characteristics were used to assess the risk of developing DPN in T2DM patients. Through 5-fold cross-validation in the training group, the least absolute shrinkage and selection operator (LASSO) regression analysis method was used to optimize variable selection. In addition, using multifactor logistic regression analysis, a predictive model and nomogram were developed. Results: A total of eight independent predictors were found to be associated with the DPN in multivariate logistic regression analyses: advanced age of grading (odds ratio/OR 1.575), smoke (OR 2.815), insomnia (OR 0.557), sweating (OR 0.535), loose teeth (OR 1.713), dry skin (OR 1.831), purple tongue (OR 2.278). And dark red tongue (OR 0.139). The model was constructed using these eight predictor's medium discriminative capabilities. The area under the curve (AUC) of the training set is 0.727, and the AUC of the validation set is 0.744 on the ROC curve. The calibration plot revealed that the model's goodness-of-fit is satisfactory. Conclusions: We established a TCM prediction model for DPN in patients with T2DM based on the TCM clinical index.

10.
Int J Biol Macromol ; 246: 125526, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37379955

RESUMO

Plant acyl-CoA-binding proteins (ACBPs), which contain the conserved ACB domain, participate in multiple biological processes, however, there are few reports on wheat ACBPs. In this study, the ACBP genes from nine different species were identified comprehensively. The expression patterns of TaACBP genes in multiple tissues and under various biotic stresses were determined by qRT-PCR. The function of selected TaACBP genes was studied by virus-induced gene silencing. A total of 67 ACBPs were identified from five monocotyledonous and four dicotyledonous species and divided into four classes. Tandem duplication analysis of the ACBPs suggested that tandem duplication events occurred in Triticum dicoccoides, but there was no tandem duplication event in wheat ACBP genes. Evolutionary analysis suggested that the TdACBPs may have experienced gene introgression during tetraploid evolution, while TaACBP gene loss events occurred during hexaploid wheat evolution. The expression pattern showed that all the TaACBP genes were expressed, and most of them were responsive to induction by Blumeria graminis f. sp. tritici or Fusarium graminearum. Silencing of TaACBP4A-1 and TaACBP4A-2 increased powdery mildew susceptibility in the common wheat BainongAK58. Furthermore, TaACBP4A-1, which belonged to class III, physically interacted with autophagy-related ubiquitin-like protein TaATG8g in yeast cells. This study provided a valuable reference for further investigations into the functional and molecular mechanisms of the ACBP gene family.


Assuntos
Inibidor da Ligação a Diazepam , Triticum , Triticum/genética , Inibidor da Ligação a Diazepam/genética , Resistência à Doença/genética , Saccharomyces cerevisiae/genética , Genes de Plantas , Doenças das Plantas/genética
11.
Eur J Med Chem ; 254: 115367, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37086699

RESUMO

Histone deacetylases (HDACs) and lysine-specific demethylase 1 (LSD1) are attractive targets for epigenetic cancer therapy. There is an intimate interplay between the two enzymes. HDACs inhibitors have shown synergistic anticancer effects in combination with LSD1 inhibitors in several types of cancer. Herein, we describe the discovery of compound 5e, a highly potent HDACs inhibitor (HDAC1/2/6/8; IC50 = 2.07/4.71/2.40/107 nM) with anti-LSD1 potency (IC50 = 1.34 µM). Compound 5e exhibited marked antiproliferative activity in several cancer cell lines. 5e effectively induced mitochondrial apoptosis with G2/M phase arrest, inhibiting cell migration and invasion in MGC-803 and HCT-116 cancer cells. It also showed good liver microsomal stability and acceptable pharmacokinetic parameters in SD rats. More importantly, orally administered compound 5e demonstrated higher in vivo antitumor efficacy than SAHA in the MGC-803 (TGI = 71.5%) and HCT-116 (TGI = 57.6%) xenograft tumor models accompanied by good tolerability. This study provides a novel lead compound with dual inhibitory activity against HDACs and LSD1 to further develop epigenetic drugs for solid tumor therapy. Further optimization is needed to improve the LSD1 activity to achieve dual inhibitors with balanced potency on LSD1 and HDACs.


Assuntos
Antineoplásicos , Inibidores de Histona Desacetilases , Humanos , Ratos , Animais , Inibidores de Histona Desacetilases/farmacologia , Linhagem Celular Tumoral , Ratos Sprague-Dawley , Proliferação de Células , Apoptose , Histona Desmetilases , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Relação Estrutura-Atividade
12.
Ann Transl Med ; 11(3): 145, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36846009

RESUMO

Background: With the development of technology and the renewal of traditional Chinese medicine (TCM) diagnostic equipment, artificial intelligence (AI) has been widely applied in TCM. Numerous articles employing this technology have been published. This study aimed to outline the knowledge and themes trends of the four TCM diagnostic methods to help researchers quickly master the hotspots and trends in this field. Four TCM diagnostic methods is a TCM diagnostic method through inspection, listening, smelling, inquiring and palpation, the purpose of which is to collect the patient's medical history, symptoms and signs. Then, it provides an analytical basis for later disease diagnosis and treatment plans. Methods: Publications related to AI-based research on the four TCM diagnostic methods were selected from the Web of Science Core Collection, without any restriction on the year of publication. VOSviewer and Citespace were primarily used to create graphical bibliometric maps in this field. Results: China was the most productive country in this field, and Evidence-Based Complementary and Alternative Medicine published the largest number of related papers, and the Shanghai University of Traditional Chinese Medicine is the dominant research organization. The Chengdu University of Traditional Chinese Medicine had the highest average number of citations. Jinhong Guo was the most influential author and Artificial Intelligence in Medicine was the most authoritative journal. Six clusters separated by keywords association showed the range of AI-based research on the four TCM diagnostic methods. The hotspots of AI-based research on the four TCM diagnostic methods included the classification and diagnosis of tongue images in patients with diabetes and machine learning for TCM symptom differentiation. Conclusions: This study demonstrated that AI-based research on the four TCM diagnostic methods is currently in the initial stage of rapid development and has bright prospects. Cross-country and regional cooperation should be strengthened in the future. It is foreseeable that more related research outputs will rely on the interdisciplinarity of TCM and the development of neural networks models.

13.
Phytopathology ; 113(3): 497-507, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36346372

RESUMO

Late blight and powdery mildew are two widespread tomato diseases caused by Phytophthora infestans and Oidium neolycopersici, respectively, which reduce the quantity and quality of tomato. MicroRNAs (miRNAs) play critical roles in tomato resistance to various pathogens. Investigating the function of miRNAs is of great significance in controlling tomato diseases. To identify potential miRNAs involved in the interaction of tomato with P. infestans or O. neolycopersici, we analyzed the expression profiles of small RNAs in tomato leaves infected with these two pathogens using RNA-seq technology. A total of 330 and 288 miRNAs exhibited differences in expression levels after exposure to P. infestans and O. neolycopersici, respectively. One hundred and forty-six commonly differentially expressed (DE) miRNAs responsive to P. infestans and O. neolycopersici infestation were detected, including 10 commonly known conserved DE miRNAs and 136 novel miRNAs. Among these known DE miRNAs, sly-miR397 was strongly downregulated in response to P. infestans or O. neolycopersici infection. Silencing of sly-miR397 resulted in enhanced tolerance to the pathogens, whereas overexpression of sly-miR397 showed increased susceptibility. Furthermore, changes in sly-miR397 expression could also affect expression levels of pathogenesis-related genes and reactive oxygen species-scavenging genes, leading to altered necrotic cells and H2O2 levels. In addition, the number of lateral branches significantly changed in transgenic plants. Taken together, our results provide potential miRNA resources for further research of miRNA-disease associations and indicates that sly-miR397 acts as a negative regulator of disease resistance and influences lateral branch development in tomato.


Assuntos
MicroRNAs , Phytophthora infestans , Solanum lycopersicum , Solanum lycopersicum/genética , Phytophthora infestans/genética , Peróxido de Hidrogênio , Doenças das Plantas/genética , MicroRNAs/genética , MicroRNAs/metabolismo
14.
BMC Microbiol ; 22(1): 275, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36380285

RESUMO

BACKGROUND: Wickerhamomyces anomalus (W. anomalus) is a kind of non-Saccharomyces yeast that has a variety of unique physiological characteristics and metabolic features and is widely used in many fields, such as food preservation, biomass energy, and aquaculture feed protein production. However, the mechanism of W. anomalus response to ethanol stress is still unclear, which greatly limits its application in the production of ethanol beverages and ethanol fuels. Therefore, we checked the effects of ethanol stress on the morphology, the growth, and differentially expressed genes (DEGs) and metabolites (DEMs) of W. anomalus. RESULTS: High concentrations of ethanol (9% ethanol and 12% ethanol) remarkably inhibited the growth of W. anomalus. Energy metabolism, amino acid metabolism, fatty acids metabolism, and nucleic acid metabolism were significantly influenced when exposing to 9% ethanol and 12% ethanolstress, which maybe universal for W. anomalus to response to different concentrations of ethanol stressl Furthermore, extracellular addition of aspartate, glutamate, and arginine significantly abated ethanol damage and improved the survival rate of W. anomalus. CONCLUSIONS: The results obtained in this study provide insights into the mechanisms involved in W. anomalus response to ethanol stress. Therefore, new strategies can be realized to improve the ethanol tolerance of W. anomalus through metabolic engineering.


Assuntos
Etanol , Saccharomycetales , Etanol/farmacologia , Etanol/metabolismo , Transcriptoma , Saccharomycetales/genética , Saccharomycetales/metabolismo , Leveduras
15.
Molecules ; 27(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36364306

RESUMO

Ginkgo tea and ginkgo wine are two familiar Ginkgo biloba leaf extract (GBE) drinks in the form of dietary supplements (DS) used for healthcare in east Asia. Nevertheless, a comprehensive evaluation of their safety and efficacy is still lacking. In this study, GBE drinks were prepared from naturally newly senescent yellow leaves (YL) and green leaves (GL) in autumn. Their total flavonoids, antioxidant capacity and prescribed ingredients were investigated. In brief, the proportions of total flavonoids, total flavonol glycosides (TFs), total terpene trilactones (TTLs) and ginkgolic acids in the GBE drinks all did not meet the standards of worldwide pharmacopoeias. Specifically, the levels of TFs in the ginkgo tea prepared from YL were significantly higher than that prepared from GL. Further analyses revealed a substandard ratio of isorhamnetin/quercetin and an accumulation of leaf-age-related compounds, which were both unqualified. The proportions of specific TTLs varied between the ginkgo tea and ginkgo wine, although no significant differences were detected in terms of the total levels of TTLs. Noticeably, numerous biflavones and thousands of times over the limiting concentration of ginkgolic acids, including newly identified types, were only detected in ginkgo wine. Finally, the use of the GBE drinks as DSs was comprehensively evaluated according to the acceptable daily intake. This study showed the limited healthcare effects of GBE drinks despite their powerful antioxidant capacity.


Assuntos
Antioxidantes , Ginkgo biloba , Antioxidantes/farmacologia , Antioxidantes/análise , Extratos Vegetais/farmacologia , Suplementos Nutricionais/análise , Flavonoides/farmacologia , Terpenos/análise , Chá , Folhas de Planta/química
16.
Int J Gen Med ; 15: 8093-8109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389015

RESUMO

Objective: Acupuncture treatment is widely used for essential hypertension (EH), and numerous systematic reviews on acupuncture for EH have been published. This article provides an overview of the effectiveness and safety of acupuncture for EH and assesses the quality of reports, methodological bias, quality of evidence and risk of bias for inclusion in the evaluation. Methods: Two researchers independently computer searched Pubmed, EMbase, The Cochrane library, WOS, CBM, CNKI, Wangfang Data, VIP and other Chinese and English databases with a search time frame from the date of creation to 13th October 2022; and independently screened systematic reviews of acupuncture therapy for EH; and finally The Report Quality Assessment Tool (PRISMA 2020), Methodological Quality Assessment Tool (AMSTAR2), Grading of Evidence Assessment Tool (GRADE), and Bias Assessment Tool (ROBIS) were used independently to assess the bias of the included literature. Results: A total of 11 systematic reviews were included. The included studies mainly reported on outcome indicators such as efficiency rate, end SBP, end DBP, SBP change value, DBP change value, etc. Deficiencies in the quality of PRISMA 2020 reporting were mainly in the areas of independent screening by multiple researchers, use of GRADE for analysis, early registration, description of conflict of interest, and public access to information; the results of the AMSTAR 2 tool evaluation were mostly were very low, and of the 16 entries affecting the methodological quality of the systematic evaluation, entries 2/3/4/5/12/16 had the greatest methodological bias; GRADE assessed the quality of evidence for key outcome indicators, with a few being low and all others being very low; and ROBIS reported a high level of bias in the literature. Conclusion: Current acupuncture has some efficacy in the treatment of essential hypertension, but its quality of evidence is low. It is hoped that the quality of relevant literature reporting, methodological quality, quality of evidence, and bias will improve.

17.
Bioorg Med Chem ; 73: 117033, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36202064

RESUMO

Targeted protein degradation using proteolysis-targeting chimeras (PROTACs) has emerged as an effective strategy for drug discovery, given their unique advantages over target protein inhibition. The bromodomain and extra-terminal (BET) family proteins play a key role in regulating oncogene expression and are considered attractive therapeutic targets for cancer therapy. Considering the therapeutic potential of BET proteins in cancer and the marked attractiveness of PROTACs, BET-targeting PROTACs have been extensively pursued. Recently, BET-targeting PROTACs based on new E3 ligases and novel strategies, such as light-activated, macrocyclic, folate-caged, aptamer-PROTAC conjugation, antibody-coupling, and autophagy-targeting strategies, have emerged. In the present review, we provide a comprehensive summary of advances in BET-targeting PROTACs.


Assuntos
Neoplasias , Humanos , Ácido Fólico , Neoplasias/tratamento farmacológico , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
18.
Front Plant Sci ; 13: 943217, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937376

RESUMO

The ankyrin-transmembrane (ANKTM) subfamily is the most abundant subgroup of the ANK superfamily, with critical roles in pathogen defense. However, the function of ANKTM proteins in wheat immunity remains largely unexplored. Here, a total of 381 ANKTMs were identified from five Triticeae species and Arabidopsis, constituting five classes. Among them, class a only contains proteins from Triticeae species and the number of ANKTM in class a of wheat is significantly larger than expected, even after consideration of the ploidy level. Tandem duplication analysis of ANKTM indicates that Triticum urartu, Triticum dicoccoides and wheat all had experienced tandem duplication events which in wheat-produced ANKTM genes all clustered in class a. The above suggests that not only did the genome polyploidization result in the increase of ANKTM gene number, but that tandem duplication is also a mechanism for the expansion of this subfamily. Micro-collinearity analysis of Triticeae ANKTMs indicates that some ANKTM type genes evolved into other types of ANKs in the evolution process. Public RNA-seq data showed that most of the genes in class d and class e are expressed, and some of them show differential responses to biotic stresses. Furthermore, qRT-PCR results showed that some ANKTMs in class d and class e responded to powdery mildew. Silencing of TaANKTM2A-5 by barley stripe mosaic virus-induced gene silencing compromised powdery mildew resistance in common wheat Bainongaikang58. Findings in this study not only help to understand the evolutionary process of ANKTM genes, but also form the basis for exploring disease resistance genes in the ANKTM gene family.

20.
Front Cell Dev Biol ; 10: 870441, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573687

RESUMO

Stem cell-based cell therapies are considered to be promising treatments for retinal disorders with dysfunction or death of photoreceptors. However, the enrichment of human photoreceptors suitable for transplantation has been highly challenging so far. This study aimed to generate a photoreceptor-specific reporter human induced pluripotent stem cell (hiPSC) line using CRISPR/Cas9 genome editing, which harbored an enhanced green fluorescent protein (eGFP) sequence at the endogenous locus of the pan photoreceptor marker recoverin (RCVRN). After confirmation of successful targeting and gene stability, three-dimensional retinal organoids were induced from this reporter line. The RCVRN-eGFP reporter faithfully replicated endogenous protein expression of recoverin and revealed the developmental characteristics of photoreceptors during retinal differentiation. The RCVRN-eGFP specifically and steadily labeled photoreceptor cells from photoreceptor precursors to mature rods and cones. Additionally, abundant eGFP-positive photoreceptors were enriched by fluorescence-activated cell sorting, and their transcriptome signatures were revealed by RNA sequencing and data analysis. Moreover, potential clusters of differentiation (CD) biomarkers were extracted for the enrichment of photoreceptors for clinical applications, such as CD133 for the positive selection of photoreceptors. Altogether, the RCVRN-eGFP reporter hiPSC line was successfully established and the first global expression database of recoverin-positive photoreceptors was constructed. These achievements will provide a powerful tool for dynamically monitoring photoreceptor cell development and purification of human photoreceptors, thus facilitating photoreceptor cell therapy for advanced retinal disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA