Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(38): 50929-50941, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39107637

RESUMO

Peanut is an economically important crop, but it is susceptible to Cr contamination. In this study, we used peanut as experimental material to investigate the effects of exogenous P, Se interacting with Cr on the nutrient growth and antioxidant system of peanut seedlings by simulating Cr (0 µM, 50 µM, and 100 µM) stress environment. The results showed that exogenous P, Se supply could mitigate irreversible damage to peanut seedlings by altering the distribution of Cr in roots and aboveground, changing root conformation, and repairing damaged cells to promote growth. When the Cr concentration is 100 µM, it exhibits the highest toxicity. Compared to the control group P and Se (0 MM), the treatment with simultaneous addition of P + Se (0.5 + 6.0) resulted in a significant increase in root length and root tip number by 248.7% and 127.4%, respectively. Additionally, there was a 46.9% increase in chlorophyll content, a 190.2% increase in total surface area of the seedlings, and a respective increase of 149.1% and 180.3% in soluble protein content in the shoot and roots. In addition, by restricting the absorption of Cr and reducing the synthesis of superoxide dismutase SOD (Superoxide dismutase), CAT (Catalase), POD (Peroxidase), and MDA (Malonaldehyde), it effectively alleviates the oxidative stress on the antioxidant system. Therefore, the exogenous addition of P (0.5 MM) and Se (6.0 MM) prevented the optimal concentration of chromium toxicity to peanuts. Our research provides strong evidence that the exogenous combination of P and Se reduces the risk of peanut poisoning by Cr, while also exploring the optimal concentration of exogenous P and Se under laboratory conditions, providing a basis for further field experiments.


Assuntos
Antioxidantes , Arachis , Fósforo , Plântula , Selênio , Arachis/efeitos dos fármacos , Plântula/efeitos dos fármacos , Selênio/farmacologia , Homeostase , Cromo , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Raízes de Plantas/efeitos dos fármacos , Poluentes do Solo
2.
Haematologica ; 107(1): 154-166, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33299232

RESUMO

Hematopoietic stem cells (HSCs) are dominantly quiescent under homeostasis, which is a key mechanism of maintaining the HSC pool for life-long hematopoiesis. Dormant HSCs poise to be immediately activated on urgent conditions and can return to quiescence after regaining homeostasis. To date, the molecular networks of regulating the threshold of HSC dormancy, if exist, remain largely unknown. Here, we unveiled that deletion of Nupr1, a gene preferentially expressed in HSCs, activated the quiescence HSCs under homeostatic status, which conferred engraftment competitive advantage on HSCs without compromising their stemness and multi-lineage differentiation abilities in serial transplantation settings. Following an expansion protocol, the Nupr1-/- HSCs proliferate more robustly than their wild type counterparts in vitro. Nupr1 inhibits the expression of p53 and the rescue of which offsets the engraftment advantage. Our data unveil the de novo role of Nupr1 as an HSC quiescence-regulator, which provides insights into accelerating the engraftment efficacy of HSC transplantation by targeting the HSC quiescence-controlling network.


Assuntos
Proteínas de Ligação a DNA/genética , Células-Tronco Hematopoéticas , Proteínas de Neoplasias/genética , Proteína Supressora de Tumor p53 , Animais , Diferenciação Celular , Hematopoese/genética , Homeostase , Camundongos , Camundongos Endogâmicos C57BL , Proteína Supressora de Tumor p53/genética
3.
J Immunother Cancer ; 8(2)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32669292

RESUMO

Tumor-associated antigen (TAA) T-cell receptor (TCR) gene-engineered T cells exhibit great potential in antitumor immunotherapy. Considering the high costs and low availability of patient-derived peripheral blood T cells, substantial efforts have been made to explore alternatives to natural T cells. We previously reported that enforced expression of Hoxb5 converted B cells into induced T (iT) cells in vivo Here, we successfully regenerated naive OT1 (major histocompatibility complex I restricted ovalbumin antigen) iT cells (OT1-iT) in vivo by expressing Hoxb5 in pro-pre-B cells in the OT1 transgenic mouse. The OT1-iT cells can be activated and expanded in vitro in the presence of tumor cells. Particularly, these regenerated OT1-iT cells effectively eradicated tumor cells expressing the TAA (ovalbumin) both in vitro and in vivo This study provides insights into the translational applications of blood lineage-transdifferentiated T cells in immunotherapy.


Assuntos
Antígenos de Neoplasias/metabolismo , Imunoterapia/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Humanos , Camundongos
4.
Leukemia ; 34(9): 2375-2383, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32094463

RESUMO

Bone marrow (BM) mesenchymal stem cells (MSCs) are critical components of the BM microenvironment and play an essential role in supporting hematopoiesis. Dysfunction of MSCs is associated with the impaired BM microenvironment that promotes leukemia development. However, whether and how restoration of the impaired BM microenvironment can inhibit leukemia development remain unknown. Using an established leukemia model and the RNA-Seq analysis, we discovered functional degeneration of MSCs during leukemia progression. Importantly, intra-BM instead of systemic transfusion of donor healthy MSCs restored the BM microenvironment, demonstrated by functional recovery of host MSCs, improvement of thrombopoiesis, and rebalance of myelopoiesis. Consequently, intra-BM MSC treatment reduced tumor burden and prolonged survival of the leukemia-bearing mice. Mechanistically, donor MSC treatment restored the function of host MSCs and reprogrammed host macrophages into arginase 1 positive phenotype with tissue-repair features. Transfusion of MSC-reprogrammed macrophages largely recapitulated the therapeutic effects of MSCs. Taken together, our study reveals that donor MSCs reprogram host macrophages to restore the BM microenvironment and inhibit leukemia development.


Assuntos
Leucemia/patologia , Macrófagos/patologia , Células-Tronco Mesenquimais/citologia , Microambiente Tumoral , Animais , Proliferação de Células , Reprogramação Celular , Progressão da Doença , Humanos , Camundongos , Camundongos Endogâmicos C57BL
5.
Cell Res ; 30(1): 21-33, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31729468

RESUMO

Achievement of immunocompetent and therapeutic T lymphopoiesis from pluripotent stem cells (PSCs) is a central aim in T cell regenerative medicine. To date, preferentially reconstituting T lymphopoiesis in vivo from PSCs remains a practical challenge. Here we documented that synergistic and transient expression of Runx1 and Hoxa9 restricted in the time window of endothelial-to-hematopoietic transition and hematopoietic maturation stages in a PSC differentiation scheme (iR9-PSC) in vitro induced preferential generation of engraftable hematopoietic progenitors capable of homing to thymus and developing into mature T cells in primary and secondary immunodeficient recipients. Single-cell transcriptome and functional analyses illustrated the cellular trajectory of T lineage induction from PSCs, unveiling the T-lineage specification determined at as early as hemogenic endothelial cell stage and identifying the bona fide pre-thymic progenitors. The induced T cells distributed normally in central and peripheral lymphoid organs and exhibited abundant TCRαß repertoire. The regenerative T lymphopoiesis restored immune surveillance in immunodeficient mice. Furthermore, gene-edited iR9-PSCs produced tumor-specific T cells in vivo that effectively eradicated tumor cells. This study provides insight into universal generation of functional and therapeutic T cells from the unlimited and editable PSC source.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Proteínas de Homeodomínio/genética , Linfopoese , Células-Tronco Pluripotentes/fisiologia , Linfócitos T/imunologia , Animais , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Células-Tronco Embrionárias/fisiologia , Rejeição de Enxerto/imunologia , Proteínas de Homeodomínio/metabolismo , Linfopoese/genética , Camundongos , Neoplasias Experimentais/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/química , Transplante de Pele
6.
Nat Immunol ; 19(9): 1036, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29915300

RESUMO

In the version of this article initially published, some identification of the supplementary information was incorrect. The items originally called Supplementary Tables 1, 2, 3, 4 and 5 should be Source Data Figures 1, 2, 4, 5 and 7, respectively; those originally called Supplementary Tables 6, 7 and 8 should be Supplementary Tables 1, 2 and 3, respectively; and those originally called Source Data Figures 1, 2, 4, 5 and 7 should be Supplementary Tables 4, 5, 6, 7 and 8, respectively. The errors have been corrected in the HTML version of the article.

7.
Nat Immunol ; 19(3): 279-290, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29434353

RESUMO

Deletion of master regulators of the B cell lineage reprograms B cells into T cells. Here we found that the transcription factor Hoxb5, which is expressed in uncommitted hematopoietic progenitor cells but is not present in cells committed to the B cell or T cell lineage, was able to reprogram pro-pre-B cells into functional early T cell lineage progenitors. This reprogramming started in the bone marrow and was completed in the thymus and gave rise to T lymphocytes with transcriptomes, hierarchical differentiation, tissue distribution and immunological functions that closely resembled those of their natural counterparts. Hoxb5 repressed B cell 'master genes', activated regulators of T cells and regulated crucial chromatin modifiers in pro-pre-B cells and ultimately drove the B cell fate-to-T cell fate conversion. Our results provide a de novo paradigm for the generation of functional T cells through reprogramming in vivo.


Assuntos
Linfócitos B/citologia , Linhagem da Célula/imunologia , Reprogramação Celular/imunologia , Proteínas de Homeodomínio/imunologia , Linfócitos T/citologia , Animais , Diferenciação Celular , Linhagem da Célula/genética , Reprogramação Celular/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Células Precursoras de Linfócitos B/citologia
8.
Stem Cell Res ; 21: 32-39, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28368243

RESUMO

In the field of hematopoietic regeneration, deriving hematopoietic stem cells (HSCs) from pluripotent stem cells with engraftment potential is the central mission. Unstable hematopoietic differentiation protocol due to variation factors such as serums and feeder cells, remains a major technical issue impeding the screening of key factors for the derivation of HSCs. In combination with hematopoietic cytokines, UM171 has the capacity to facilitate the maintenance and expansion of human primary HSCs in vitro. Here, using a serum-free, feeder-free, and chemically defined induction protocol, we observed that UM171 enhanced hematopoietic derivation through the entire process of hematopoietic induction in vitro. UM171 facilitated generation of robust CD34+CD45+ derivatives that formed more and larger sized CFU-GM as well as larger sized CFU-Mix. In our protocol, the derived hematopoietic progenitors failed to engraft in NOG mice, indicating the absence of long-term HSC from these progenitors. In combination with other factors and protocols, UM171 might be broadly used for hematopoietic derivation from human pluripotent stem cells in vitro.


Assuntos
Células-Tronco Hematopoéticas/citologia , Indóis/farmacologia , Células-Tronco Pluripotentes/citologia , Pirimidinas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem da Célula/efeitos dos fármacos , Células Eritroides/citologia , Células Eritroides/efeitos dos fármacos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Pluripotentes/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA