Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(12)2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38137030

RESUMO

The exogenous application of phenolic compounds is increasingly recognized as a valuable strategy for promoting growth and mitigating the adverse effects of abiotic stress. However, the biostimulant effect under optimal conditions has not been thoroughly explored. In this study, we investigated the impact of foliar application of flavonoids, specifically CropBioLife (CBL), on tomato plants grown under controlled conditions. Our study focused on determining growth parameters, such as cell size, and assessing the concentration of hormones. Principal component analysis (PCA) from all physiological variables was determined. Additionally, we utilized high-throughput mRNA-sequencing technology and bioinformatic methodologies to robustly analyze the transcriptomes of tomato leaves regulated by flavonoids. The findings revealed that CBL primarily influenced cell enlargement by 60%, leading to increased growth. Furthermore, CBL-treated plants exhibited higher concentrations of the hormone zeatin, but lower concentrations of IAA (changes of 50%). Moreover, RNA-seq analysis indicated that CBL-treated plants required increased mineral transport and water uptake, as evidenced by gene expression patterns. Genes related to pathways such as fatty acid degradation, phenylpropanoid biosynthesis, and ABC transporters showed regulatory mechanisms governing internal flavonoid biosynthesis, transport, and tissue concentration, ultimately resulting in higher flavonoid concentrations in tomato leaves.


Assuntos
Flavonoides , Solanum lycopersicum , Solanum lycopersicum/genética , Transcriptoma , Zeatina , Hormônios
2.
PLoS One ; 13(2): e0192422, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29420651

RESUMO

The use of in vitro membrane vesicles is attractive because of possible applications in therapies. Here we aimed to compare the stability and functionality of plasma membrane vesicles extracted from control and salt-treated broccoli. The impact of the amount of aquaporins was related to plasma membrane osmotic water permeability and the stability of protein secondary structure. Here, we describe for first time an increase in plant aquaporins acetylation under high salinity. Higher osmotic water permeability in NaCl vesicles has been related to higher acetylation, upregulation of aquaporins, and a more stable environment to thermal denaturation. Based on our findings, we propose that aquaporins play an important role in vesicle stability.


Assuntos
Aquaporinas/fisiologia , Brassica/fisiologia , Proteínas de Membrana/fisiologia , Aquaporinas/química , Aquaporinas/metabolismo , Eletroforese em Gel de Poliacrilamida , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Osmose , Conformação Proteica , Cloreto de Sódio/metabolismo , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA