Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Front Pharmacol ; 14: 1158091, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637423

RESUMO

Introduction: The cannabinoid receptor (CBR) subtypes 1 (CB1R) and 2 (CB2R) are key components of the endocannabinoid system (ECS), playing a central role in the control of peripheral pain, inflammation and the immune response, with further roles in the endocrine regulation of food intake and energy balance. So far, few medicines targeting these receptors have reached the clinic, suggesting that a better understanding of the receptor signalling properties of existing tool compounds and clinical candidates may open the door to the development of more effective and safer treatments. Both CB1R and CB2R are Gαi protein-coupled receptors but detecting Gαi protein signalling activity reliably and reproducibly is challenging. This is due to the inherent variability in live cell-based assays and restrictions around the use of radioactive [35S]-GTPγS, a favoured technology for developing higher-throughput membrane-based Gαi protein activity assays. Methods: Here, we describe the development of a membrane-based Gαi signalling system, produced from membrane preparations of HEK293TR cells, stably overexpressing CB1R or CB2R, and components of the Gαi-CASE biosensor. This BRET-based system allows direct detection of Gαi signalling in both cells and membranes by monitoring bioluminescence resonance energy transfer (BRET) between the α and the ßγ subunits. Cells and membranes were subject to increasing concentrations of reference cannabinoid compounds, with 10 µM furimazine added to generate RET signals, which were detected on a PHERAstar FSX plate reader, then processed using MARS software and analysed in GraphPad PRISM 9.2. Results: In membranes expressing the Gi-CASE biosensor, the cannabinoid ligands profiled were found to show agonist and inverse agonist activity. Agonist activity elicited a decrease in the BRET signal, indicative of receptor activation and G protein dissociation. Inverse agonist activity caused an increase in BRET signal, indicative of receptor inactivation, and the accumulation of inactive G protein. Our membrane-based Gi-CASE NanoBRET system successfully characterised the potency (pEC50) and efficacy (Emax) of CBR agonists and inverse agonists in a 384-well screening format. Values obtained were in-line with whole-cell Gi-CASE assays and consistent with literature values obtained in the GTPγS screening format. Discussion: This novel, membrane-based Gαi protein activation assay is applicable to other Gαi-coupled GPCRs, including orphan receptors, allowing real-time higher-throughput measurements of receptor activation.

2.
J Am Chem Soc ; 145(28): 15094-15108, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37401816

RESUMO

Pharmacological modulation of cannabinoid receptor type 2 (CB2R) holds promise for the treatment of neuroinflammatory disorders, such as Alzheimer's disease. Despite the importance of CB2R, its expression and downstream signaling are insufficiently understood in disease- and tissue-specific contexts. Herein, we report the first ligand-directed covalent (LDC) labeling of CB2R enabled by a novel synthetic strategy and application of platform reagents. The LDC modification allows visualization and study of CB2R while maintaining its ability to bind other ligands at the orthosteric site. We employed in silico docking and molecular dynamics simulations to guide probe design and assess the feasibility of LDC labeling of CB2R. We demonstrate selective, covalent labeling of a peripheral lysine residue of CB2R by exploiting fluorogenic O-nitrobenzoxadiazole (O-NBD)-functionalized probes in a TR-FRET assay. The rapid proof-of-concept validation with O-NBD probes inspired incorporation of advanced electrophiles suitable for experiments in live cells. To this end, novel synthetic strategies toward N-sulfonyl pyridone (N-SP) and N-acyl-N-alkyl sulfonamide (NASA) LDC probes were developed, which allowed covalent delivery of fluorophores suitable for cellular studies. The LDC probes were characterized by a radioligand binding assay and TR-FRET experiments. Additionally, the probes were applied to specifically visualize CB2R in conventional and imaging flow cytometry as well as in confocal fluorescence microscopy using overexpressing and endogenously expressing microglial live cells.


Assuntos
Corantes Fluorescentes , Transdução de Sinais , Ligantes , Ligação Proteica , Corantes Fluorescentes/química , Receptores de Canabinoides
3.
ACS Omega ; 8(2): 2367-2376, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687043

RESUMO

The human neuropeptide neuromedin S (NMS) consists of 33 amino acids. The introduction of tritium atoms into NMS has not been described so far. This represents a gap for using [3H]NMS in radioreceptor binding assays or in tracking and monitoring their metabolic pathway. Two approaches for the incorporation of tritium into NMS were explored in this study: (1) halogenation at the His-18 residue followed by catalyzed iodine-127/tritium exchange and (2) conjugation of tritiated N-succinimidyl-[2,3-3H3]propionate ([3H]NSP) to at least one of the three available primary amines of amino acids Ile-1, Lys-15, and Lys-16 in the peptide sequence. Although iodination of histidine was achieved, subsequent iodine-127/deuterium exchange was unsuccessful. Derivatization at the three possible amino positions in the peptide using nonradioactive NSP resulted in a mixture of unconjugated NSM and 1- to 3-conjugations at different amino acids in the peptide sequence. Each labeling position in the mixture was assigned following detailed LC-MS/MS analysis. After separating the mixture, it was shown in an in vitro fluorometric imaging plate reader (FLIPR) and in a competitive binding assay that the propionyl-modified NMS derivatives were comparable to the unlabeled NMS, regardless of the degree of labeling and the labeling position(s). A molecular simulation with NMS in the binding pocket of the protein neuromedin U receptor 2 (NMUR2) confirmed that the possible labeling positions are located outside the binding region of NMUR2. Tritium labeling was achieved at the N-terminal Ile-1 using [3H]NSP in 7% yield with a radiochemical purity of >95% and a molar activity of 90 Ci/mmol. This approach provides access to tritiated NMS and enables new investigations to characterize NMS or corresponding NMS ligands.

4.
Methods Mol Biol ; 2576: 477-493, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152211

RESUMO

Computational methods in medicinal chemistry facilitate drug discovery and design. In particular, machine learning methodologies have recently gained increasing attention. This chapter provides a structured overview of the current state of computational chemistry and its applications for the interrogation of the endocannabinoid system (ECS), highlighting methods in structure-based drug design, virtual screening, ligand-based quantitative structure-activity relationship (QSAR) modeling, and de novo molecular design. We emphasize emerging methods in machine learning and anticipate a forecast of future opportunities of computational medicinal chemistry for the ECS.


Assuntos
Química Computacional , Endocanabinoides , Desenho de Fármacos , Ligantes , Aprendizado de Máquina , Relação Quantitativa Estrutura-Atividade
5.
Chem Sci ; 13(19): 5539-5545, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35694350

RESUMO

Despite its essential role in the (patho)physiology of several diseases, CB2R tissue expression profiles and signaling mechanisms are not yet fully understood. We report the development of a highly potent, fluorescent CB2R agonist probe employing structure-based reverse design. It commences with a highly potent, preclinically validated ligand, which is conjugated to a silicon-rhodamine fluorophore, enabling cell permeability. The probe is the first to preserve interspecies affinity and selectivity for both mouse and human CB2R. Extensive cross-validation (FACS, TR-FRET and confocal microscopy) set the stage for CB2R detection in endogenously expressing living cells along with zebrafish larvae. Together, these findings will benefit clinical translatability of CB2R based drugs.

6.
J Chem Inf Model ; 62(7): 1644-1653, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35318851

RESUMO

The Torsion Library is a collection of torsion motifs associated with angle distributions, derived from crystallographic databases. It is used in strain assessment, conformer generation, and geometry optimization. A hierarchical structure of expert curated SMARTS defines the chemical environments of rotatable bonds and associates these with preferred angles. SMARTS can be very complex and full of implications, which make them difficult to maintain manually. Recent developments in automatically comparing SMARTS patterns can be applied to the Torsion Library to ensure its correctness. We specifically discuss the implementation and the limits of such a procedure in the context of torsion motifs and show several examples of how the Torsion Library benefits from this. All automated changes are validated manually and then shown to have an effect on the angle distributions by correcting matching behavior. The corrected Torsion Library itself is available including both PDB as well as CSD histograms in the Supporting Information and can be used to evaluate rotatable bonds at https://torsions.zbh.uni-hamburg.de.


Assuntos
Conformação Molecular , Bases de Dados Factuais , Biblioteca Gênica
7.
Nature ; 591(7851): 677-681, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658720

RESUMO

The human glycine transporter 1 (GlyT1) regulates glycine-mediated neuronal excitation and inhibition through the sodium- and chloride-dependent reuptake of glycine1-3. Inhibition of GlyT1 prolongs neurotransmitter signalling, and has long been a key strategy in the development of therapies for a broad range of disorders of the central nervous system, including schizophrenia and cognitive impairments4. Here, using a synthetic single-domain antibody (sybody) and serial synchrotron crystallography, we have determined the structure of GlyT1 in complex with a benzoylpiperazine chemotype inhibitor at 3.4 Å resolution. We find that the inhibitor locks GlyT1 in an inward-open conformation and binds at the intracellular gate of the release pathway, overlapping with the glycine-release site. The inhibitor is likely to reach GlyT1 from the cytoplasmic leaflet of the plasma membrane. Our results define the mechanism of inhibition and enable the rational design of new, clinically efficacious GlyT1 inhibitors.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Glicina/química , Glicina/metabolismo , Sítios de Ligação , Transporte Biológico/efeitos dos fármacos , Cristalografia , Humanos , Modelos Moleculares , Piperazinas/química , Piperazinas/farmacologia , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Anticorpos de Domínio Único , Sulfonas/química , Sulfonas/farmacologia , Síncrotrons
8.
Angew Chem Int Ed Engl ; 60(10): 5436-5442, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33238058

RESUMO

Genetic, preclinical and clinical data link Parkinson's disease and Gaucher's disease and provide a rational entry point to disease modification therapy via enhancement of ß-Glucocerebrosidase (GCase) activity. We discovered a new class of pyrrolo[2,3-b]pyrazine activators effecting both Vmax and Km. They bind to human GCase and increase substrate metabolism in the lysosome in a cellular assay. We obtained the first crystal structure for an activator and identified a novel non-inhibitory binding mode at the interface of a dimer, rationalizing the observed structure-activity relationship (SAR). The compound binds GCase inducing formation of a dimeric state at both endoplasmic reticulum (ER) and lysosomal pHs, as confirmed by analytical ultracentrifugation. Importantly, the pyrrolo[2,3-b]pyrazines have central nervous system (CNS) drug-like properties. Our findings are important for future drug discovery efforts in the field of GCase activation and provide a deeper mechanistic understanding of the requirements for enzymatic activation, pointing to the relevance of dimerization.


Assuntos
Ativadores de Enzimas/metabolismo , Glucosilceramidase/metabolismo , Multimerização Proteica/efeitos dos fármacos , Pirazinas/metabolismo , Pirróis/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Ativadores de Enzimas/química , Glucosilceramidase/química , Humanos , Cinética , Estrutura Molecular , Ligação Proteica , Pirazinas/química , Pirróis/química , Relação Estrutura-Atividade
9.
J Am Chem Soc ; 142(40): 16953-16964, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32902974

RESUMO

Pharmacological modulation of cannabinoid type 2 receptor (CB2R) holds promise for the treatment of numerous conditions, including inflammatory diseases, autoimmune disorders, pain, and cancer. Despite the significance of this receptor, researchers lack reliable tools to address questions concerning the expression and complex mechanism of CB2R signaling, especially in cell-type and tissue-dependent contexts. Herein, we report for the first time a versatile ligand platform for the modular design of a collection of highly specific CB2R fluorescent probes, used successfully across applications, species, and cell types. These include flow cytometry of endogenously expressing cells, real-time confocal microscopy of mouse splenocytes and human macrophages, as well as FRET-based kinetic and equilibrium binding assays. High CB2R specificity was demonstrated by competition experiments in living cells expressing CB2R at native levels. The probes were effectively applied to FACS analysis of microglial cells derived from a mouse model relevant to Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Corantes Fluorescentes/química , Microglia/metabolismo , Receptor CB2 de Canabinoide/análise , Animais , Células CHO , Cricetulus , Modelos Animais de Doenças , Citometria de Fluxo , Transferência Ressonante de Energia de Fluorescência , Humanos , Ligantes , Camundongos , Simulação de Acoplamento Molecular , Sondas Moleculares/química , Imagem Óptica , Sensibilidade e Especificidade , Transdução de Sinais
10.
Chemistry ; 26(6): 1380-1387, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31961047

RESUMO

The endocannabinoid (eCB) system is implied in various human diseases ranging from central nervous system to autoimmune disorders. Cannabinoid receptor 2 (CB2 R) is an integral component of the eCB system. Yet, the downstream effects elicited by this G protein-coupled receptor upon binding of endogenous or synthetic ligands are insufficiently understood-likely due to the limited arsenal of reliable biological and chemical tools. Herein, we report the design and synthesis of CB2 R-selective cannabinoids along with their in vitro pharmacological characterization (binding and functional studies). They combine structural features of HU-308 and AM841 to give chimeric ligands that emerge as potent CB2 R agonists with high selectivity over the closely related cannabinoid receptor 1 (CB1 R). The synthesis work includes convenient preparation of substituted resorcinols often found in cannabinoids. The utility of the synthetic cannabinoids in this study is showcased by preparation of the most selective high-affinity fluorescent probe for CB2 R to date.


Assuntos
Aminas/química , Canabinoides/química , Dronabinol/análogos & derivados , Receptor CB2 de Canabinoide/metabolismo , Sítios de Ligação , Canabinoides/metabolismo , Dronabinol/química , Dronabinol/metabolismo , Humanos , Cinética , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Receptor CB1 de Canabinoide/química , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/química
11.
J Med Chem ; 62(24): 11165-11181, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31751140

RESUMO

The cannabinoid type 2 (CB2) receptor has emerged as a valuable target for therapy and imaging of immune-mediated pathologies. With the aim to find a suitable radiofluorinated analogue of the previously reported CB2 positron emission tomography (PET) radioligand [11C]RSR-056, 38 fluorinated derivatives were synthesized and tested by in vitro binding assays. With a Ki (hCB2) of 6 nM and a selectivity factor of nearly 700 over cannabinoid type 1 receptors, target compound 3 exhibited optimal in vitro properties and was selected for evaluation as a PET radioligand. [18F]3 was obtained in an average radiochemical yield of 11 ± 4% and molar activities between 33 and 114 GBq/µmol. Specific binding of [18F]3 to CB2 was demonstrated by in vitro autoradiography and in vivo PET experiments using the CB2 ligand GW-405 833. Metabolite analysis revealed only intact [18F]3 in the rat brain. [18F]3 detected CB2 upregulation in human amyotrophic lateral sclerosis spinal cord tissue and may thus become a candidate for diagnostic use in humans.


Assuntos
Encéfalo/metabolismo , Radioisótopos de Flúor/metabolismo , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons/métodos , Piridinas/química , Compostos Radiofarmacêuticos/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Animais , Encéfalo/diagnóstico por imagem , AMP Cíclico/metabolismo , Radioisótopos de Flúor/química , Hepatócitos/metabolismo , Humanos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Conformação Proteica , Radioquímica , Compostos Radiofarmacêuticos/química , Ratos , Ratos Wistar , Receptor CB2 de Canabinoide/química , Relação Estrutura-Atividade
12.
Molecules ; 24(18)2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540271

RESUMO

(1) Background: The cannabinoid 2 receptor (CB2R) is a promising anti-inflammatory drug target and development of selective CB2R ligands may be useful for treating sight-threatening ocular inflammation. (2) Methods: This study examined the pharmacology of three novel chemically-diverse selective CB2R ligands: CB2R agonists, RO6871304, and RO6871085, as well as a CB2R inverse agonist, RO6851228. In silico molecular modelling and in vitro cell-based receptor assays were used to verify CB2R interactions, binding, cell signaling (ß-arrestin and cAMP) and early absorption, distribution, metabolism, excretion, and toxicology (ADMET) profiling of these receptor ligands. All ligands were evaluated for their efficacy to modulate leukocyte-neutrophil activity, in comparison to the reported CB2R ligand, HU910, using an in vivo mouse model of endotoxin-induced uveitis (EIU) in wild-type (WT) and CB2R-/- mice. The actions of RO6871304 on neutrophil migration and adhesion were examined in vitro using isolated neutrophils from WT and CB2R-/- mice, and in vivo in WT mice with EIU using adoptive transfer of WT and CB2R-/- neutrophils, respectively. (3) Results: Molecular docking studies indicated that RO6871304 and RO6871085 bind to the orthosteric site of CB2R. Binding studies and cell signaling assays for RO6871304 and RO6871085 confirmed high-affinity binding to CB2R and selectivity for CB2R > CB1R, with both ligands acting as full agonists in cAMP and ß-arrestin assays (EC50s in low nM range). When tested in EIU, topical application of RO6871304 and RO6871085 decreased leukocyte-endothelial adhesion and this effect was antagonized by the inverse agonist, RO6851228. The CB2R agonist, RO6871304, decreased in vitro neutrophil migration of WT neutrophils but not neutrophils from CB2R-/-, and attenuated adhesion of adoptively-transferred leukocytes in EIU. (4) Conclusions: These unique ligands are potent and selective for CB2R and have good immunomodulating actions in the eye. RO6871304 and RO6871085, as well as HU910, decreased leukocyte adhesion in EIU through inhibition of resident ocular immune cells. The data generated with these three structurally-diverse and highly-selective CB2R agonists support selective targeting of CB2R for treating ocular inflammatory diseases.


Assuntos
Anti-Inflamatórios/administração & dosagem , Agonistas de Receptores de Canabinoides/administração & dosagem , Endotoxinas/efeitos adversos , Receptor CB2 de Canabinoide/antagonistas & inibidores , Uveíte/tratamento farmacológico , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Agonistas de Receptores de Canabinoides/química , Agonistas de Receptores de Canabinoides/farmacologia , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Receptor CB2 de Canabinoide/química , Receptor CB2 de Canabinoide/genética , Transdução de Sinais , Uveíte/induzido quimicamente , Uveíte/imunologia
13.
Cell ; 178(5): 1222-1230.e10, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442409

RESUMO

The CC chemokine receptor 7 (CCR7) balances immunity and tolerance by homeostatic trafficking of immune cells. In cancer, CCR7-mediated trafficking leads to lymph node metastasis, suggesting the receptor as a promising therapeutic target. Here, we present the crystal structure of human CCR7 fused to the protein Sialidase NanA by using data up to 2.1 Å resolution. The structure shows the ligand Cmp2105 bound to an intracellular allosteric binding pocket. A sulfonamide group, characteristic for various chemokine receptor ligands, binds to a patch of conserved residues in the Gi protein binding region between transmembrane helix 7 and helix 8. We demonstrate how structural data can be used in combination with a compound repository and automated thermal stability screening to identify and modulate allosteric chemokine receptor antagonists. We detect both novel (CS-1 and CS-2) and clinically relevant (CXCR1-CXCR2 phase-II antagonist Navarixin) CCR7 modulators with implications for multi-target strategies against cancer.


Assuntos
Ligantes , Receptores CCR7/metabolismo , Regulação Alostérica , Sítios de Ligação , Cristalografia por Raios X , Humanos , Simulação de Dinâmica Molecular , Neuraminidase/genética , Neuraminidase/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Receptores CCR2/química , Receptores CCR2/metabolismo , Receptores CCR7/antagonistas & inibidores , Receptores CCR7/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação
14.
J Pharmacol Toxicol Methods ; 99: 106609, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31284073

RESUMO

BACKGROUND: Several factors contribute to the development failure of novel pharmaceuticals, one of the most important being adverse effects in pre-clinical and clinical studies. Early identification of off-target compound activity can reduce safety-related attrition in development. In vitro profiling of drug candidates against a broad range of targets is an important part of the compound selection process. Many compounds are synthesized during early drug discovery, making it necessary to assess poly-pharmacology at a limited number of targets. This paper describes how a rational, statistical-ranking approach was used to generate a cost-effective, optimized panel of assays that allows selectivity focused structure-activity relationships to be explored for many molecules. This panel of 50 targets has been used to routinely screen Roche small molecules generated across a diverse range of therapeutic targets. Target hit rates from the Bioprint® database and internal Roche compounds are discussed. We further describe an example of how this panel was used within an anti-infective project to reduce in vivo testing. METHOD: To select the optimized panel of targets, IC50 values of compounds in the BioPrint® database were used to identify assay "hits" i.e. IC50 ≤ 1 µM in 123 different in vitro pharmacological assays. If groups of compounds hit the same targets, the target with the higher hit rate was selected, while others were considered redundant. Using a step-wise analysis, an assay panel was identified to maximize diversity and minimize redundancy. Over a five-year period, this panel of 50 off-targets was used to screen ≈1200 compounds synthesized for Roche drug discovery programs. Compounds were initially tested at 10 µM and hit rates generated are reported. Within one project, the number of hits was used to refine the choice of compounds being assessed in vivo. RESULTS: 95% of compounds from the BioPrint® panel were identified within the top 47-ranked assays. Based on this analytical approach and the addition of three targets with established safety concerns, a Roche panel was created for external screening. hERG is screened internally and not included in this analysis. Screening at 10 µM in the Roche panel identified that adenosine A3 and 5HT2B receptors had the highest hit rates (~30%), with 50% of the targets having a hit rate of ≤4%. An anti-infective program identified that a high number of hits in the Roche panel was associated with mortality in 19 mouse tolerability studies. To reduce the severity and number of such studies, future compound selections integrated the panel hit score into the selection process for in vivo studies. It was identified that compounds which hit less targets in the panel and had free plasma exposures of ~2 µM were generally better tolerated. DISCUSSION: This paper describes how an optimized panel of 50 assays was selected on the basis of hit similarity at 123 targets. This reduced panel, provides a cost-effective screening panel for assessing compound promiscuity, whilst also including many safety-relevant targets. Frequent use of the panel in early drug discovery has provided promiscuity and safety-relevant information to inform pre-clinical drug development at Roche.

15.
J Am Chem Soc ; 140(19): 6067-6075, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29420021

RESUMO

Chemical tools and methods that report on G protein-coupled receptor (GPCR) expression levels and receptor occupancy by small molecules are highly desirable. We report the development of LEI121 as a photoreactive probe to study the type 2 cannabinoid receptor (CB2R), a promising GPCR to treat tissue injury and inflammatory diseases. LEI121 is the first CB2R-selective bifunctional probe that covalently captures CB2R upon photoactivation. An incorporated alkyne serves as ligation handle for the introduction of reporter groups. LEI121 enables target engagement studies and visualization of endogenously expressed CB2R in HL-60 as well as primary human immune cells using flow cytometry. Our findings show that strategically functionalized probes allow monitoring of endogenous GPCR expression and engagement in human cells using tandem photoclick chemistry and hold promise as biomarkers in translational drug discovery.


Assuntos
Morfolinas/química , Marcadores de Fotoafinidade/química , Piridinas/química , Receptor CB2 de Canabinoide/biossíntese , Receptor CB2 de Canabinoide/metabolismo , Alcinos/química , Células HL-60 , Humanos , Ligantes , Estrutura Molecular , Morfolinas/síntese química , Marcadores de Fotoafinidade/síntese química , Piridinas/síntese química
16.
EBioMedicine ; 24: 76-92, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28923680

RESUMO

Therapeutic approaches to fight Alzheimer's disease include anti-Amyloidß (Aß) antibodies and secretase inhibitors. However, the blood-brain barrier (BBB) limits the brain exposure of biologics and the chemical space for small molecules to be BBB permeable. The Brain Shuttle (BS) technology is capable of shuttling large molecules into the brain. This allows for new types of therapeutic modalities engineered for optimal efficacy on the molecular target in the brain independent of brain penetrating properties. To this end, we designed BACE1 peptide inhibitors with varying lipid modifications with single-digit picomolar cellular potency. Secondly, we generated active-exosite peptides with structurally confirmed dual binding mode and improved potency. When fused to the BS via sortase coupling, these BACE1 inhibitors significantly reduced brain Aß levels in mice after intravenous administration. In plasma, both BS and non-BS BACE1 inhibitor peptides induced a significant time- and dose-dependent decrease of Aß. Our results demonstrate that the BS is essential for BACE1 peptide inhibitors to be efficacious in the brain and active-exosite design of BACE1 peptide inhibitors together with lipid modification may be of therapeutic relevance.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Encéfalo/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Administração Intravenosa , Secretases da Proteína Precursora do Amiloide/química , Animais , Ácido Aspártico Endopeptidases/química , Barreira Hematoencefálica/metabolismo , Domínio Catalítico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Camundongos , Fragmentos de Peptídeos/farmacologia , Receptores da Transferrina/metabolismo
17.
J Med Chem ; 59(9): 4087-102, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-26878596

RESUMO

We present a series of small molecule drug discovery case studies where computational methods were prospectively employed to impact Roche research projects, with the aim of highlighting those methods that provide real added value. Our brief accounts encompass a broad range of methods and techniques applied to a variety of enzymes and receptors. Most of these are based on judicious application of knowledge about molecular conformations and interactions: filling of lipophilic pockets to gain affinity or selectivity, addition of polar substituents, scaffold hopping, transfer of SAR, conformation analysis, and molecular overlays. A case study of sequence-driven focused screening is presented to illustrate how appropriate preprocessing of information enables effective exploitation of prior knowledge. We conclude that qualitative statements enabling chemists to focus on promising regions of chemical space are often more impactful than quantitative prediction.


Assuntos
Desenho de Fármacos , Conformação Molecular , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
18.
J Chem Inf Model ; 56(1): 1-5, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26679290

RESUMO

The Torsion Library contains hundreds of rules for small molecule conformations which have been derived from the Cambridge Structural Database (CSD) and are curated by molecular design experts. The torsion rules are encoded as SMARTS patterns and categorize rotatable bonds via a traffic light coloring scheme. We have systematically revised all torsion rules to better identify highly strained conformations and minimize the number of false alerts for CSD small molecule X-ray structures. For this new release, we added or substantially modified 78 torsion patterns and reviewed all angles and tolerance intervals. The overall number of red alerts for a filtered CSD data set with 130 000 structures was reduced by a factor of 4 compared to the predecessor. This is of clear advantage in 3D virtual screening where hits should only be removed by a conformational filter if they are in energetically inaccessible conformations.


Assuntos
Biologia Computacional/métodos , Conformação Molecular , Bibliotecas de Moléculas Pequenas/química , Bases de Dados de Produtos Farmacêuticos , Desenho de Fármacos , Modelos Moleculares
19.
ChemMedChem ; 11(2): 179-89, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26228928

RESUMO

The cannabinoid receptor 2 (CB2) system is described to modulate various pathological conditions, including inflammation and fibrosis. A series of new heterocyclic small-molecule CB2 receptor agonists were identified from a high-throughput screen. Lead optimization gave access to novel, highly potent, and selective (over CB1) triazolopyrimidine derivatives. A preliminary structure-activity relationship was established, and physicochemical properties in this compound class were significantly improved toward better solubility, lipophilicity, and microsomal stability. An optimized triazolopyrimidine derivative, (3S)-1-[5-tert-butyl-3-[(1-cyclopropyltetrazol-5-yl)methyl]triazolo[4,5-d]pyrimidin-7-yl]pyrrolidin-3-ol (39), was tested in a kidney ischemia-reperfusion model, in which it showed efficacy at a dose of 10 mg kg(-1) (p.o.). A significant depletion of the three measured kidney markers indicated a protective role of CB2 receptor activation toward inflammatory kidney damage. Compound 39 was also protective in a model of renal fibrosis. Oral treatment with 39 at 3 mg kg(-1) per day significantly decreased the amount of fibrosis by ∼ 40% which was induced by unilateral ureter obstruction.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Inflamação/tratamento farmacológico , Nefropatias/tratamento farmacológico , Pirimidinas/farmacologia , Receptor CB2 de Canabinoide/agonistas , Triazóis/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
20.
J Med Chem ; 58(3): 1358-71, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25565255

RESUMO

Negative allosteric modulators (NAMs) of metabotropic glutamate receptor 5 (mGlu5) have potential for the treatment of psychiatric diseases including depression, fragile X syndrome (FXS), anxiety, obsessive-compulsive disorders, and levodopa induced dyskinesia in Parkinson's disease. Herein we report the optimization of a weakly active screening hit 1 to the potent and selective compounds chloro-4-[1-(4-fluorophenyl)-2,5-dimethyl-1H-imidazol-4-ylethynyl]pyridine (basimglurant, 2) and 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP, 3). Compound 2 is active in a broad range of anxiety tests reaching the same efficacy but at a 10- to 100-fold lower dose compared to diazepam and is characterized by favorable DMPK properties in rat and monkey as well as an excellent preclinical safety profile and is currently in phase II clinical studies for the treatment of depression and fragile X syndrome. Analogue 3 is the first reported mGlu5 NAM with a long half-life in rodents and is therefore an ideal tool compound for chronic studies in mice and rats.


Assuntos
Depressão/tratamento farmacológico , Descoberta de Drogas , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Imidazóis/farmacologia , Piridinas/farmacologia , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Humanos , Imidazóis/síntese química , Imidazóis/química , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA