Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
iScience ; 27(6): 110096, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38957791

RESUMO

Recent developments in immunotherapy, including immune checkpoint blockade (ICB) and adoptive cell therapy (ACT), have encountered challenges such as immune-related adverse events and resistance, especially in solid tumors. To advance the field, a deeper understanding of the molecular mechanisms behind treatment responses and resistance is essential. However, the lack of functionally characterized immune-related gene sets has limited data-driven immunological research. To address this gap, we adopted non-negative matrix factorization on 83 human bulk RNA sequencing (RNA-seq) datasets and constructed 28 immune-specific gene sets. After rigorous immunologist-led manual annotations and orthogonal validations across immunological contexts and functional omics data, we demonstrated that these gene sets can be applied to refine pan-cancer immune subtypes, improve ICB response prediction and functionally annotate spatial transcriptomic data. These functional gene sets, informing diverse immune states, will advance our understanding of immunology and cancer research.

2.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798470

RESUMO

Recent developments in immunotherapy, including immune checkpoint blockade (ICB) and adoptive cell therapy, have encountered challenges such as immune-related adverse events and resistance, especially in solid tumors. To advance the field, a deeper understanding of the molecular mechanisms behind treatment responses and resistance is essential. However, the lack of functionally characterized immune-related gene sets has limited data-driven immunological research. To address this gap, we adopted non-negative matrix factorization on 83 human bulk RNA-seq datasets and constructed 28 immune-specific gene sets. After rigorous immunologist-led manual annotations and orthogonal validations across immunological contexts and functional omics data, we demonstrated that these gene sets can be applied to refine pan-cancer immune subtypes, improve ICB response prediction and functionally annotate spatial transcriptomic data. These functional gene sets, informing diverse immune states, will advance our understanding of immunology and cancer research.

3.
Res Sq ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38558990

RESUMO

Interactions of light-sensitive drugs and materials with Cerenkov radiation-emitting radiopharmaceuticals generate cytotoxic reactive oxygen species (ROS) to inhibit localized and disseminated cancer progression, but the cell death mechanisms underlying this radionuclide stimulated dynamic therapy (RaST) remain elusive. Using ROS-regenerative nanophotosensitizers coated with a tumor-targeting transferrin-titanocene complex (TiO2-TC-Tf) and radiolabeled 2-fluorodeoxyglucose (18FDG), we found that adherent dying cells maintained metabolic activity with increased membrane permeabilization. Mechanistic assessment of these cells revealed that RaST activated the expression of RIPK-1 and RIPK-3, which mediate necroptosis cell death. Subsequent recruitment of the nuclear factors kappa B and the executioner mixed lineage kinase domain-like pseudo kinase (MLKL) triggered plasma membrane permeabilization and pore formation, respectively, followed by the release of cytokines and immunogenic damage-associated molecular patterns (DAMPs). In immune-deficient breast cancer models with adequate stroma and growth factors that recapitulate the human tumor microenvironment, RaST failed to inhibit tumor progression and the ensuing lung metastasis. A similar aggressive tumor model in immunocompetent mice responded to RaST, achieving a remarkable partial response (PR) and complete response (CR) with no evidence of lung metastasis, suggesting active immune system engagement. RaST recruited antitumor CD11b+, CD11c+, and CD8b+ effector immune cells after initiating dual immunogenic apoptosis and necroptosis cell death pathways in responding tumors in vivo. Over time, cancer cells upregulated the expression of negative immune regulating cytokine (TGF-ß) and soluble immune checkpoints (sICP) to challenge RaST effect in the CR mice. Using a signal-amplifying cancer-imaging agent, LS301, we identified latent minimal residual disseminated tumors in the lymph nodes (LNs) of the CR group. Despite increased protumor immunogens in the CR mice, RaST prevented cancer relapse and metastasis through dynamic redistribution of ROS-regenerative TiO2 from bones at the early treatment stage to the spleen and LNs, maintaining active immunity against cancer progression and migration. This study reveals the immune-mechanistic underpinnings of RaST-mediated antitumor immune response and highlights immunogenic reprogramming of tumors in response to RaST. Overcoming apoptosis resistance through complementary necroptosis activation paves the way for strategic drug combinations to improve cancer treatment.

4.
bioRxiv ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38187708

RESUMO

The goal of therapeutic cancer vaccines and immune checkpoint therapy (ICT) is to eliminate cancer by expanding and/or sustaining T cells with anti-tumor capabilities. However, whether cancer vaccines and ICT enhance anti-tumor immunity by distinct or overlapping mechanisms remains unclear. Here, we compared effective therapeutic tumor-specific mutant neoantigen (NeoAg) cancer vaccines with anti-CTLA-4 and/or anti-PD-1 ICT in preclinical models. Both NeoAg vaccines and ICT induce expansion of intratumoral NeoAg-specific CD8 T cells, though the degree of expansion and acquisition of effector activity was much more substantial following NeoAg vaccination. Further, we found that NeoAg vaccines are particularly adept at inducing proliferating and stem-like NeoAg-specific CD8 T cells. Single cell T cell receptor (TCR) sequencing revealed that TCR clonotype expansion and diversity of NeoAg-specific CD8 T cells relates to their phenotype and functional state associated with specific immunotherapies employed. Effective NeoAg vaccines and ICT required both CD8 and CD4 T cells. While NeoAg vaccines and anti-PD-1 affected the CD4 T cell compartment, it was to less of an extent than observed with anti-CTLA-4, which notably induced ICOS+Bhlhe40+ Th1-like CD4 T cells and, when combined with anti-PD-1, a small subset of Th2-like CD4 T cells. Although effective NeoAg vaccines or ICT expanded intratumoral M1-like iNOS+ macrophages, NeoAg vaccines expanded rather than suppressed (as observed with ICT) M2-like CX3CR1+CD206+ macrophages, associated with the vaccine adjuvant. Further, combining NeoAg vaccination with ICT induced superior efficacy compared to either therapy in isolation, highlighting the utility of combining these modalities to eliminate cancer.

5.
Science ; 379(6633): eabg2752, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36795805

RESUMO

The induction of proinflammatory T cells by dendritic cell (DC) subtypes is critical for antitumor responses and effective immune checkpoint blockade (ICB) therapy. Here, we show that human CD1c+CD5+ DCs are reduced in melanoma-affected lymph nodes, with CD5 expression on DCs correlating with patient survival. Activating CD5 on DCs enhanced T cell priming and improved survival after ICB therapy. CD5+ DC numbers increased during ICB therapy, and low interleukin-6 (IL-6) concentrations promoted their de novo differentiation. Mechanistically, CD5 expression by DCs was required to generate optimally protective CD5hi T helper and CD8+ T cells; further, deletion of CD5 from T cells dampened tumor elimination in response to ICB therapy in vivo. Thus, CD5+ DCs are an essential component of optimal ICB therapy.


Assuntos
Antígenos CD5 , Linfócitos T CD8-Positivos , Células Dendríticas , Inibidores de Checkpoint Imunológico , Imunoterapia , Melanoma , Linfócitos T Auxiliares-Indutores , Humanos , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Células Dendríticas/imunologia , Melanoma/tratamento farmacológico , Antígenos CD5/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Linfócitos T Auxiliares-Indutores/imunologia
6.
J Exp Med ; 220(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36367776

RESUMO

Immune checkpoint blockade (ICB) has revolutionized cancer treatment, yet quality of life and continuation of therapy can be constrained by immune-related adverse events (irAEs). Limited understanding of irAE mechanisms hampers development of approaches to mitigate their damage. To address this, we examined whether mice gained sensitivity to anti-CTLA-4 (αCTLA-4)-mediated toxicity upon disruption of gut homeostatic immunity. We found αCTLA-4 drove increased inflammation and colonic tissue damage in mice with genetic predisposition to intestinal inflammation, acute gastrointestinal infection, transplantation with a dysbiotic fecal microbiome, or dextran sodium sulfate administration. We identified an immune signature of αCTLA-4-mediated irAEs, including colonic neutrophil accumulation and systemic interleukin-6 (IL-6) release. IL-6 blockade combined with antibiotic treatment reduced intestinal damage and improved αCTLA-4 therapeutic efficacy in inflammation-prone mice. Intestinal immune signatures were validated in biopsies from patients with ICB colitis. Our work provides new preclinical models of αCTLA-4 intestinal irAEs, mechanistic insights into irAE development, and potential approaches to enhance ICB efficacy while mitigating irAEs.


Assuntos
Colite , Interleucina-6 , Camundongos , Animais , Qualidade de Vida , Colite/patologia , Imunoterapia , Inflamação
7.
Sci Immunol ; 7(72): eabl9330, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35687697

RESUMO

Radiotherapy (RT) of colorectal cancer (CRC) can prime adaptive immunity against tumor-associated antigen (TAA)-expressing CRC cells systemically. However, abscopal tumor remissions are extremely rare, and the postirradiation immune escape mechanisms in CRC remain elusive. Here, we found that irradiated CRC cells used ATR-mediated DNA repair signaling pathway to up-regulate both CD47 and PD-L1, which through engagement of SIRPα and PD-1, respectively, prevented phagocytosis by antigen-presenting cells and thereby limited TAA cross-presentation and innate immune activation. This postirradiation CD47 and PD-L1 up-regulation was observed across various human solid tumor cells. Concordantly, rectal cancer patients with poor responses to neoadjuvant RT exhibited significantly elevated postirradiation CD47 levels. The combination of RT, anti-SIRPα, and anti-PD-1 reversed adaptive immune resistance and drove efficient TAA cross-presentation, resulting in robust TAA-specific CD8 T cell priming, functional activation of T effectors, and increased T cell clonality and clonal diversity. We observed significantly higher complete response rates to RT/anti-SIRPα/anti-PD-1 in both irradiated and abscopal tumors and prolonged survival in three distinct murine CRC models, including a cecal orthotopic model. The efficacy of triple combination therapy was STING dependent as knockout animals lost most benefit of adding anti-SIRPα and anti-PD-1 to RT. Despite activation across the myeloid stroma, the enhanced dendritic cell function accounts for most improvements in CD8 T cell priming. These data suggest ATR-mediated CD47 and PD-L1 up-regulation as a key mechanism restraining radiation-induced immune priming. RT combined with SIRPα and PD-1 blockade promotes robust antitumor immune priming, leading to systemic tumor regressions.


Assuntos
Antígeno CD47 , Neoplasias Colorretais , Animais , Antígenos de Neoplasias , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Antígeno B7-H1 , Antígeno CD47/metabolismo , Neoplasias Colorretais/radioterapia , Humanos , Camundongos , Receptor de Morte Celular Programada 1 , Regulação para Cima
8.
Clin Cancer Res ; 28(18): 3917-3928, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35594163

RESUMO

Basic science breakthroughs in T-cell biology and immune-tumor cell interactions ushered in a new era of cancer immunotherapy. Twenty years ago, cancer immunoediting was proposed as a framework to understand the dynamic process by which the immune system can both control and shape cancer and in its most complex form occurs through three phases termed elimination, equilibrium, and escape. During cancer progression through these phases, tumors undergo immunoediting, rendering them less immunogenic and more capable of establishing an immunosuppressive microenvironment. Therefore, cancer immunoediting integrates the complex immune-tumor cell interactions occurring in the tumor microenvironment and sculpts immunogenicity beyond shaping antigenicity. However, with the success of cancer immunotherapy resulting in durable clinical responses in the last decade and subsequent emergence of immuno-oncology as a clinical subspecialty, the phrase "cancer immunoediting" has recently, at times, been inappropriately restricted to describing neoantigen loss by immunoselection. This focus has obscured other mechanisms by which cancer immunoediting modifies tumor immunogenicity. Although establishment of the concept of cancer immunoediting and definitive experimental evidence supporting its existence was initially obtained from preclinical models in the absence of immunotherapy, cancer immunoediting is a continual process that also occurs during immunotherapy in human patients with cancer. Herein, we discuss the known mechanisms of cancer immunoediting obtained from preclinical and clinical data with an emphasis on how a greater understanding of cancer immunoediting may provide insights into immunotherapy resistance and how this resistance can be overcome.


Assuntos
Neoplasias , Humanos , Fatores Imunológicos , Imunoterapia/métodos , Oncologia , Neoplasias/patologia , Linfócitos T , Microambiente Tumoral
10.
Cancer Immunol Res ; 10(5): 597-611, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35181783

RESUMO

Immune checkpoint therapy (ICT) using antibody blockade of programmed cell death protein 1 (PD-1) or cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) can provoke T cell-dependent antitumor activity that generates durable clinical responses in some patients. The epigenetic and transcriptional features that T cells require for efficacious ICT remain to be fully elucidated. Herein, we report that anti-PD-1 and anti-CTLA-4 ICT induce upregulation of the transcription factor BHLHE40 in tumor antigen-specific CD8+ and CD4+ T cells and that T cells require BHLHE40 for effective ICT in mice bearing immune-edited tumors. Single-cell RNA sequencing of intratumoral immune cells in BHLHE40-deficient mice revealed differential ICT-induced immune cell remodeling. The BHLHE40-dependent gene expression changes indicated dysregulated metabolism, NF-κB signaling, and IFNγ response within certain subpopulations of CD4+ and CD8+ T cells. Intratumoral CD4+ and CD8+ T cells from BHLHE40-deficient mice exhibited higher expression of the inhibitory receptor gene Tigit and displayed alterations in expression of genes encoding chemokines/chemokine receptors and granzyme family members. Mice lacking BHLHE40 had reduced ICT-driven IFNγ production by CD4+ and CD8+ T cells and defects in ICT-induced remodeling of macrophages from a CX3CR1+CD206+ subpopulation to an iNOS+ subpopulation that is typically observed during effective ICT. Although both anti-PD-1 and anti-CTLA-4 ICT in BHLHE40-deficient mice led to the same outcome-tumor outgrowth-several BHLHE40-dependent alterations were specific to the ICT that was used. Our results reveal a crucial role for BHLHE40 in effective ICT and suggest that BHLHE40 may be a predictive or prognostic biomarker for ICT efficacy and a potential therapeutic target.


Assuntos
Neoplasias , Microambiente Tumoral , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Granzimas , Proteínas de Homeodomínio , Humanos , Interferon gama , Camundongos , Neoplasias/tratamento farmacológico
11.
Cell ; 182(4): 886-900.e17, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32783918

RESUMO

Checkpoint immunotherapy unleashes T cell control of tumors, but is undermined by immunosuppressive myeloid cells. TREM2 is a myeloid receptor that transmits intracellular signals that sustain microglial responses during Alzheimer's disease. TREM2 is also expressed by tumor-infiltrating macrophages. Here, we found that Trem2-/- mice are more resistant to growth of various cancers than wild-type mice and are more responsive to anti-PD-1 immunotherapy. Furthermore, treatment with anti-TREM2 mAb curbed tumor growth and fostered regression when combined with anti-PD-1. scRNA-seq revealed that both TREM2 deletion and anti-TREM2 are associated with scant MRC1+ and CX3CR1+ macrophages in the tumor infiltrate, paralleled by expansion of myeloid subsets expressing immunostimulatory molecules that promote improved T cell responses. TREM2 was expressed in tumor macrophages in over 200 human cancer cases and inversely correlated with prolonged survival for two types of cancer. Thus, TREM2 might be targeted to modify tumor myeloid infiltrates and augment checkpoint immunotherapy.


Assuntos
Imunoterapia , Glicoproteínas de Membrana/metabolismo , Neoplasias/terapia , Receptor de Morte Celular Programada 1/imunologia , Receptores Imunológicos/metabolismo , Animais , Anticorpos Monoclonais/uso terapêutico , Receptor 1 de Quimiocina CX3C/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/metabolismo , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Metilcolantreno/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/induzido quimicamente , Neoplasias/patologia , Prognóstico , Receptor de Morte Celular Programada 1/metabolismo , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Microambiente Tumoral
12.
Nature ; 574(7780): 696-701, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31645760

RESUMO

The ability of the immune system to eliminate and shape the immunogenicity of tumours defines the process of cancer immunoediting1. Immunotherapies such as those that target immune checkpoint molecules can be used to augment immune-mediated elimination of tumours and have resulted in durable responses in patients with cancer that did not respond to previous treatments. However, only a subset of patients benefit from immunotherapy and more knowledge about what is required for successful treatment is needed2-4. Although the role of tumour neoantigen-specific CD8+ T cells in tumour rejection is well established5-9, the roles of other subsets of T cells have received less attention. Here we show that spontaneous and immunotherapy-induced anti-tumour responses require the activity of both tumour-antigen-specific CD8+ and CD4+ T cells, even in tumours that do not express major histocompatibility complex (MHC) class II molecules. In addition, the expression of MHC class II-restricted antigens by tumour cells is required at the site of successful rejection, indicating that activation of CD4+ T cells must also occur in the tumour microenvironment. These findings suggest that MHC class II-restricted neoantigens have a key function in the anti-tumour response that is nonoverlapping with that of MHC class I-restricted neoantigens and therefore needs to be considered when identifying patients who will most benefit from immunotherapy.


Assuntos
Antígenos de Neoplasias/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Neoplasias Experimentais/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunoterapia , Camundongos , Neoplasias Experimentais/terapia
14.
Cell ; 175(4): 1014-1030.e19, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30343900

RESUMO

Although current immune-checkpoint therapy (ICT) mainly targets lymphoid cells, it is associated with a broader remodeling of the tumor micro-environment. Here, using complementary forms of high-dimensional profiling, we define differences across all hematopoietic cells from syngeneic mouse tumors during unrestrained tumor growth or effective ICT. Unbiased assessment of gene expression of tumor-infiltrating cells by single-cell RNA sequencing (scRNAseq) and longitudinal assessment of cellular protein expression by mass cytometry (CyTOF) revealed significant remodeling of both the lymphoid and myeloid intratumoral compartments. Surprisingly, we observed multiple subpopulations of monocytes/macrophages, distinguishable by the markers CD206, CX3CR1, CD1d, and iNOS, that change over time during ICT in a manner partially dependent on IFNγ. Our data support the hypothesis that this macrophage polarization/activation results from effects on circulatory monocytes and early macrophages entering tumors, rather than on pre-polarized mature intratumoral macrophages.


Assuntos
Linfócitos/imunologia , Células Mieloides/imunologia , Neoplasias/imunologia , Análise de Célula Única , Transcriptoma , Animais , Linhagem Celular Tumoral , Citometria de Fluxo , Imunoterapia/métodos , Interferon gama/imunologia , Ativação de Macrófagos , Masculino , Espectrometria de Massas , Camundongos , Células Precursoras de Monócitos e Macrófagos/imunologia , Neoplasias/terapia
15.
Cancer Immunol Res ; 5(6): 434-438, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28576922

RESUMO

The Keystone Symposia conference on Cancer Immunology and Immunotherapy: Taking a Place in Mainstream Oncology was held at the Fairmont Chateau in Whistler, British Columbia, Canada, on March 19-23, 2017. The conference brought together a sold-out audience of 654 scientists, clinicians, and others from both academia and industry to discuss the latest developments in cancer immunology and immunotherapy. This meeting report summarizes the main themes that emerged during the four-day conference. Cancer Immunol Res; 5(6); 434-8. ©2017 AACR.


Assuntos
Neoplasias/imunologia , Neoplasias/terapia , Animais , Vacinas Anticâncer , Humanos , Tolerância Imunológica , Imunoterapia Adotiva , Linfócitos T/imunologia
16.
Cancer Immunol Res ; 5(2): 106-117, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28073774

RESUMO

Antibody blockade of programmed death-1 (PD-1) or its ligand, PD-L1, has led to unprecedented therapeutic responses in certain tumor-bearing individuals, but PD-L1 expression's prognostic value in stratifying cancer patients for such treatment remains unclear. Reports conflict on the significance of correlations between PD-L1 on tumor cells and positive clinical outcomes to PD-1/PD-L1 blockade. We investigated this issue using genomically related, clonal subsets from the same methylcholanthrene-induced sarcoma: a highly immunogenic subset that is spontaneously eliminated in vivo by adaptive immunity and a less immunogenic subset that forms tumors in immunocompetent mice, but is sensitive to PD-1/PD-L1 blockade therapy. Using CRISPR/Cas9-induced loss-of-function approaches and overexpression gain-of-function techniques, we confirmed that PD-L1 on tumor cells is key to promoting tumor escape. In addition, the capacity of PD-L1 to suppress antitumor responses was inversely proportional to tumor cell antigenicity. PD-L1 expression on host cells, particularly tumor-associated macrophages (TAM), was also important for tumor immune escape. We demonstrated that induction of PD-L1 on tumor cells was IFNγ-dependent and transient, but PD-L1 induction on TAMs was of greater magnitude, only partially IFNγ dependent, and was stable over time. Thus, PD-L1 expression on either tumor cells or host immune cells could lead to tumor escape from immune control, indicating that total PD-L1 expression in the immediate tumor microenvironment may represent a more accurate biomarker for predicting response to PD-1/PD-L1 blockade therapy, compared with monitoring PD-L1 expression on tumor cells alone. Cancer Immunol Res; 5(2); 106-17. ©2017 AACR.


Assuntos
Antígeno B7-H1/genética , Expressão Gênica , Neoplasias/genética , Neoplasias/imunologia , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Genes MHC Classe I/genética , Genes MHC Classe I/imunologia , Humanos , Masculino , Camundongos , Mutação , Neoplasias/patologia , Sarcoma/genética , Sarcoma/imunologia , Sarcoma/patologia , Carga Tumoral , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
17.
Immunohorizons ; 1(6): 109-123, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30035254

RESUMO

Posttranscriptional gene regulation by RNA-binding proteins, such as HuR (elavl1), fine-tune gene expression in T cells, leading to powerful effects on immune responses. HuR can stabilize target mRNAs and/or promote translation by interacting with their 3' untranslated region adenylate and uridylate-rich elements. It was previously demonstrated that HuR facilitates Th2 cytokine expression by mRNA stabilization. However, its effects upon IL-2 homeostasis and CD4+ Th2 differentiation are not as well understood. We found that optimal translation of Il2ra (CD25) required interaction of its mRNA with HuR. Conditional HuR knockout in CD4+ T cells resulted in loss of IL-2 homeostasis and defects in JAK-STAT signaling, Th2 differentiation, and cytokine production. HuR-knockout CD4+ T cells from OVA-immunized mice also failed to proliferate in response to Ag. These results demonstrate that HuR plays a pivotal role in maintaining normal IL-2 homeostasis and initiating CD4+ Th2 differentiation.

18.
Adv Immunol ; 130: 25-74, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26922999

RESUMO

Definitive experimental evidence from mouse cancer models and strong correlative clinical data gave rise to the Cancer Immunoediting concept that explains the dual host-protective and tumor-promoting actions of immunity on developing cancers. Tumor-specific neoantigens can serve as targets of spontaneously arising adaptive immunity to cancer and thereby determine the ultimate fate of developing tumors. Tumor-specific neoantigens can also function as optimal targets of cancer immunotherapy against established tumors. These antigens are derived from nonsynonymous mutations that occur during cellular transformation and, because they are foreign to the host genome, are not subject to central tolerance. In this review, we summarize the experimental evidence indicating that cancer neoantigens are the source of both spontaneously occurring and therapeutically induced immune responses against cancer. We also review the advances in genomics, bioinformatics, and cancer immunotherapy that have facilitated identification of neoantigens and have moved personalized cancer immunotherapies into clinical trials, with the promise of providing more specific, safer, more effective, and perhaps even more generalizable treatments to cancer patients than current immunotherapies.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/uso terapêutico , Transformação Celular Neoplásica/genética , Imunidade Celular , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Animais , Vacinas Anticâncer/imunologia , Genômica , Humanos , Camundongos , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , Mutação , Neoplasias Experimentais/imunologia , Microambiente Tumoral/imunologia
20.
Cell ; 162(6): 1229-41, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26321679

RESUMO

Failure of T cells to protect against cancer is thought to result from lack of antigen recognition, chronic activation, and/or suppression by other cells. Using a mouse sarcoma model, we show that glucose consumption by tumors metabolically restricts T cells, leading to their dampened mTOR activity, glycolytic capacity, and IFN-γ production, thereby allowing tumor progression. We show that enhancing glycolysis in an antigenic "regressor" tumor is sufficient to override the protective ability of T cells to control tumor growth. We also show that checkpoint blockade antibodies against CTLA-4, PD-1, and PD-L1, which are used clinically, restore glucose in tumor microenvironment, permitting T cell glycolysis and IFN-γ production. Furthermore, we found that blocking PD-L1 directly on tumors dampens glycolysis by inhibiting mTOR activity and decreasing expression of glycolysis enzymes, reflecting a role for PD-L1 in tumor glucose utilization. Our results establish that tumor-imposed metabolic restrictions can mediate T cell hyporesponsiveness during cancer.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Glicólise , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral , Animais , Anticorpos Monoclonais/administração & dosagem , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Interferon gama/imunologia , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA