Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Brain Pathol ; 34(2): e13218, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37927164

RESUMO

Multiple sclerosis is a chronic autoimmune disease of the central nervous system characterized by myelin loss, axonal damage, and glial scar formation. Still, the underlying processes remain unclear, as numerous pathways and factors have been found to be involved in the development and progression of the disease. Therefore, it is of great importance to find suitable animal models as well as reliable methods for their precise and reproducible analysis. Here, we describe the impact of demyelination on clinically relevant gray matter regions of the hippocampus and cerebral cortex, using the previously established cuprizone model for aged mice. We could show that bioinformatic image analysis methods are not only suitable for quantification of cell populations, but also for the assessment of de- and remyelination processes, as numerous objective parameters can be considered for reproducible measurements. After cuprizone-induced demyelination, subsequent remyelination proceeded slowly and remained incomplete in all gray matter areas studied. There were regional differences in the number of mature oligodendrocytes during remyelination suggesting region-specific differences in the factors accounting for remyelination failure, as, even in the presence of oligodendrocytes, remyelination in the cortex was found to be impaired. Upon cuprizone administration, synaptic density and dendritic volume in the gray matter of aged mice decreased. The intensity of synaptophysin staining gradually restored during the subsequent remyelination phase, however the expression of MAP2 did not fully recover. Microgliosis persisted in the gray matter of aged animals throughout the remyelination period, whereas extensive astrogliosis was of short duration as compared to white matter structures. In conclusion, we demonstrate that the application of the cuprizone model in aged mice mimics the impaired regeneration ability seen in human pathogenesis more accurately than commonly used protocols with young mice and therefore provides an urgently needed animal model for the investigation of remyelination failure and remyelination-enhancing therapies.


Assuntos
Doenças Desmielinizantes , Remielinização , Humanos , Camundongos , Animais , Idoso , Cuprizona/toxicidade , Substância Cinzenta/patologia , Doenças Desmielinizantes/patologia , Remielinização/fisiologia , Córtex Cerebral/patologia , Oligodendroglia/patologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Bainha de Mielina/patologia
2.
Nat Commun ; 14(1): 6911, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903797

RESUMO

Axon degeneration and functional decline in myelin diseases are often attributed to loss of myelin but their relation is not fully understood. Perturbed myelinating glia can instigate chronic neuroinflammation and contribute to demyelination and axonal damage. Here we study mice with distinct defects in the proteolipid protein 1 gene that develop axonal damage which is driven by cytotoxic T cells targeting myelinating oligodendrocytes. We show that persistent ensheathment with perturbed myelin poses a risk for axon degeneration, neuron loss, and behavioral decline. We demonstrate that CD8+ T cell-driven axonal damage is less likely to progress towards degeneration when axons are efficiently demyelinated by activated microglia. Mechanistically, we show that cytotoxic T cell effector molecules induce cytoskeletal alterations within myelinating glia and aberrant actomyosin constriction of axons at paranodal domains. Our study identifies detrimental axon-glia-immune interactions which promote neurodegeneration and possible therapeutic targets for disorders associated with myelin defects and neuroinflammation.


Assuntos
Doenças Desmielinizantes , Microglia , Animais , Camundongos , Axônios/metabolismo , Linfócitos T CD8-Positivos , Doenças Desmielinizantes/metabolismo , Bainha de Mielina/metabolismo , Doenças Neuroinflamatórias
4.
Neural Regen Res ; 18(12): 2599-2605, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37449595

RESUMO

Multiple sclerosis is a multifactorial chronic inflammatory disease of the central nervous system that leads to demyelination and neuronal cell death, resulting in functional disability. Remyelination is the natural repair process of demyelination, but it is often incomplete or fails in multiple sclerosis. Available therapies reduce the inflammatory state and prevent clinical relapses. However, therapeutic approaches to increase myelin repair in humans are not yet available. The substance cytidine-5'-diphosphocholine, CDP-choline, is ubiquitously present in eukaryotic cells and plays a crucial role in the synthesis of cellular phospholipids. Regenerative properties have been shown in various animal models of diseases of the central nervous system. We have already shown that the compound CDP-choline improves myelin regeneration in two animal models of multiple sclerosis. However, the results from the animal models have not yet been studied in patients with multiple sclerosis. In this review, we summarise the beneficial effects of CDP-choline on biolipid metabolism and turnover with regard to inflammatory and regenerative processes. We also explain changes in phospholipid and sphingolipid homeostasis in multiple sclerosis and suggest a possible therapeutic link to CDP-choline.

5.
Front Cell Neurosci ; 17: 1207540, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492129

RESUMO

Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system. Spontaneous restoration of myelin after demyelination occurs, but its efficiency declines during disease progression. Efficient myelin repair requires fine-tuning inflammatory responses by brain-resident microglia and infiltrating macrophages. Accordingly, promising therapeutic strategies aim at controlling inflammation to promote remyelination. Polysialic acid (polySia) is a polymeric glycan with variable chain lengths, presented as a posttranslational modification on select protein carriers. PolySia emerges as a negative regulator of inflammatory microglia and macrophage activation and has been detected on oligodendrocyte precursors and reactive astrocytes in multiple sclerosis lesions. As shown recently, polySia-modified proteins can also be released by activated microglia, and the intrinsically released protein-bound and exogenously applied free polySia were equally able to attenuate proinflammatory microglia activation via the inhibitory immune receptor Siglec-E. In this study, we explore polySia as a candidate substance for promoting myelin regeneration by immunomodulation. Lysophosphatidylcholine-induced demyelination of organotypic cerebellar slice cultures was used as an experimental model to analyze the impact of polySia with different degrees of polymerization (DP) on remyelination and inflammation. In lysophosphatidylcholine-treated cerebellar slice cultures, polySia-positive cells were abundant during demyelination but largely reduced during remyelination. Based on the determination of DP24 as the minimal polySia chain length required for the inhibition of inflammatory BV2 microglia activation, pools with short and long polySia chains (DP8-14 and DP24-30) were generated and applied to slice cultures during remyelination. Unlike DP8-14, treatment with DP24-30 significantly improved remyelination, increased arginase-1-positive microglia ratios, and reduced the production of nitric oxide in wildtype, but not in Siglec-E-deficient slice cultures. In vitro differentiation of oligodendrocytes was not affected by DP24-30. Collectively, these results suggest a beneficial effect of exogenously applied polySia DP24-30 on remyelination by Siglec-E-dependent microglia regulation.

6.
Glia ; 71(11): 2573-2590, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37455566

RESUMO

Demyelination in the central nervous system (CNS) is a hallmark of many neurodegenerative diseases such as multiple sclerosis (MS) and others. Here, we studied astrocytes during de- and remyelination in the cuprizone mouse model. To this end, we exploited the ribosomal tagging (RiboTag) technology that is based on Cre-mediated cell type-selective HA-tagging of ribosomes. Analyses were performed in the corpus callosum of GFAP-Cre+/- Rpl22HA/wt mice 5 weeks after cuprizone feeding, at the peak of demyelination, and 0.5 and 2 weeks after cuprizone withdrawal, when remyelination and tissue repair is initiated. After 5 weeks of cuprizone feeding, reactive astrocytes showed inflammatory signatures with enhanced expression of genes that modulate leukocyte migration (Tlr2, Cd86, Parp14) and they produced the chemokine CXCL10, as verified by histology. Furthermore, demyelination-induced reactive astrocytes expressed numerous ligands including Cx3cl1, Csf1, Il34, and Gas6 that act on homeostatic as well as activated microglia and thus potentially mediate activation and recruitment of microglia and enhancement of their phagocytotic activity. During early remyelination, HA-tagged cells displayed reduced inflammatory response signatures, as indicated by shutdown of CXCL10 production, and enhanced expression of osteopontin (SPP1) as well as of factors that are relevant for tissue remodeling (Timp1), regeneration and axonal repair. During late remyelination, the signatures shifted towards resolving inflammation by active suppression of lymphocyte activation and differentiation and support of glia cell differentiation. In conclusion, we detected highly dynamic astroglial transcriptomic signatures in the cuprizone model, which reflects excessive communication among glia cells and highlights different astrocyte functions during neurodegeneration and regeneration.


Assuntos
Cuprizona , Doenças Desmielinizantes , Camundongos , Animais , Cuprizona/toxicidade , Astrócitos/metabolismo , Doenças Desmielinizantes/patologia , Neuroglia/metabolismo , Corpo Caloso/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo
7.
Nat Commun ; 14(1): 3372, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291151

RESUMO

Failed regeneration of myelin around neuronal axons following central nervous system damage contributes to nerve dysfunction and clinical decline in various neurological conditions, for which there is an unmet therapeutic demand. Here, we show that interaction between glial cells - astrocytes and mature myelin-forming oligodendrocytes - is a determinant of remyelination. Using in vivo/ ex vivo/ in vitro rodent models, unbiased RNA sequencing, functional manipulation, and human brain lesion analyses, we discover that astrocytes support the survival of regenerating oligodendrocytes, via downregulation of the Nrf2 pathway associated with increased astrocytic cholesterol biosynthesis pathway activation. Remyelination fails following sustained astrocytic Nrf2 activation in focally-lesioned male mice yet is restored by either cholesterol biosynthesis/efflux stimulation, or Nrf2 inhibition using the existing therapeutic Luteolin. We identify that astrocyte-oligodendrocyte interaction regulates remyelination, and reveal a drug strategy for central nervous system regeneration centred on targeting this interaction.


Assuntos
Astrócitos , Fator 2 Relacionado a NF-E2 , Masculino , Camundongos , Animais , Humanos , Astrócitos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Sistema Nervoso Central/metabolismo , Oligodendroglia/metabolismo , Bainha de Mielina/metabolismo , Regeneração Nervosa/fisiologia , Colesterol/metabolismo
8.
Histochem Cell Biol ; 158(1): 15-38, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35380252

RESUMO

Myelin loss with consecutive axon degeneration and impaired remyelination are the underlying causes of progressive disease in patients with multiple sclerosis. Astrocytes are suggested to play a major role in these processes. The unmasking of distinct astrocyte identities in health and disease would help to understand the pathophysiological mechanisms in which astrocytes are involved. However, the number of specific astrocyte markers is limited. Therefore, we performed immunohistochemical studies and analyzed various markers including GFAP, vimentin, S100B, ALDH1L1, and LCN2 during de- and remyelination using the toxic murine cuprizone animal model. Applying this animal model, we were able to confirm overlapping expression of vimentin and GFAP and highlighted the potential of ALDH1L1 as a pan-astrocytic marker, in agreement with previous data. Only a small population of GFAP-positive astrocytes in the corpus callosum highly up-regulated LCN2 at the peak of demyelination and S100B expression was found in a subset of oligodendroglia as well, thus S100B turned out to have a limited use as a particular astroglial marker. Additionally, numerous GFAP-positive astrocytes in the lateral corpus callosum did not express S100B, further strengthening findings of heterogeneity in the astrocytic population. In conclusion, our results acknowledged that GFAP, vimentin, LCN2, and ALDH1L1 serve as reliable marker to identify activated astrocytes during cuprizone-induced de- and remyelination. Moreover, there were clear regional and temporal differences in protein and mRNA expression levels and patterns of the studied markers, generally between gray and white matter structures.


Assuntos
Doenças Desmielinizantes , Remielinização , Animais , Astrócitos , Biomarcadores/metabolismo , Corpo Caloso/metabolismo , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Remielinização/fisiologia , Vimentina/metabolismo
9.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34832936

RESUMO

Inflammatory attacks and demyelination in the central nervous system (CNS) are the key factors responsible for the damage of neurons in multiple sclerosis (MS). Remyelination is the natural regenerating process after demyelination that also provides neuroprotection but is often incomplete or fails in MS. Currently available therapeutics are affecting the immune system, but there is no substance that might enhance remyelination. Cytidine-S-diphosphate choline (CDP-choline), a precursor of the biomembrane component phospholipid phosphatidylcholine was shown to improve remyelination in two animal models of demyelination. However, the doses used in previous animal studies were high (500 mg/kg), and it is not clear if lower doses, which could be applied in human trials, might exert the same beneficial effect on remyelination. The aim of this study was to confirm previous results and to determine the potential regenerative effects of lower doses of CDP-choline (100 and 50 mg/kg). The effects of CDP-choline were investigated in the toxic cuprizone-induced mouse model of de- and remyelination. We found that even low doses of CDP-choline effectively enhanced early remyelination. The beneficial effects on myelin regeneration were accompanied by higher numbers of oligodendrocytes. In conclusion, CDP-choline could become a promising regenerative substance for patients with multiple sclerosis and should be tested in a clinical trial.

10.
Glia ; 69(4): 925-942, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33245604

RESUMO

The loss of myelinating oligodendrocytes is a key characteristic of many neurological diseases, including Multiple Sclerosis (MS). In progressive MS, where effective treatment options are limited, peripheral immune cells can be found at the site of demyelination and are suggested to play a functional role during disease progression. In this study, we hypothesize that metabolic oligodendrocyte injury, caused by feeding the copper chelator cuprizone, is a potent trigger for peripheral immune cell recruitment into the central nervous system (CNS). We used immunohistochemistry and flow cytometry to evaluate the composition, density, and activation status of infiltrating T lymphocytes in cuprizone-intoxicated mice and post-mortem progressive MS tissues. Our results demonstrate a predominance of CD8+ T cells along with high proliferation rates and cytotoxic granule expression, indicating an antigenic and pro-inflammatory milieu in the CNS of cuprizone-intoxicated mice. Numbers of recruited T cells and the composition of lymphocytic infiltrates in cuprizone-intoxicated mice were found to be comparable to those found in progressive MS lesions. Finally, amelioration of the cuprizone-induced pathology by treating mice with laquinimod significantly reduces the number of recruited T cells. Overall, this study provides strong evidence that toxic demyelination is a sufficient trigger for T cells to infiltrate the demyelinated CNS. Further investigation of the mode of action and functional consequence of T cell recruitment might offer promising new therapeutic approaches for progressive MS.


Assuntos
Cuprizona , Doenças Desmielinizantes , Animais , Linfócitos T CD8-Positivos , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Oligodendroglia
11.
Cells ; 9(4)2020 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290524

RESUMO

To unravel the failure of remyelination in multiple sclerosis (MS) and to test promising remyelinating treatments, suitable animal models like the well-established cuprizone model are required. However, this model is only standardized in young mice. This does not represent the typical age of MS patients. Furthermore, remyelination is very fast in young mice, hindering the examination of effects of remyelination-promoting agents. Thus, there is the need for a better animal model to study remyelination. We therefore aimed to establish the cuprizone model in aged mice. 6-month-old C57BL6 mice were fed with different concentrations of cuprizone (0.2-0.6%) for 5-6.5 weeks. De- and remyelination in the medial and lateral parts of the corpus callosum were analyzed by immunohistochemistry. Feeding aged mice 0.4% cuprizone for 6.5 weeks resulted in the best and most reliable administration scheme with virtually complete demyelination of the corpus callosum. This was accompanied by a strong accumulation of microglia and near absolute loss of mature oligodendrocytes. Subsequent remyelination was initially robust but remained incomplete. The remyelination process in mature adult mice better represents the age of MS patients and offers a better model for the examination of regenerative therapies.


Assuntos
Cuprizona/uso terapêutico , Doenças Desmielinizantes/tratamento farmacológico , Inibidores da Monoaminoxidase/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Remielinização/efeitos dos fármacos , Animais , Cuprizona/farmacologia , Modelos Animais de Doenças , Masculino , Camundongos , Inibidores da Monoaminoxidase/farmacologia , Esclerose Múltipla/patologia
12.
J Neuroimmunol ; 342: 577216, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32199198

RESUMO

Regulatory T cells (Treg) maintain immunological self-tolerance and their functional or numerical deficits are associated with progression of several neurological diseases. We examined the effects of Treg absence on the structure and integrity of the unchallenged murine brain. When compared to control, Treg-deficient FoxP3sf mutant mice showed no differences in brain size, myelin amount and oligodendrocyte numbers. FoxP3sf strain displayed no variations in quantity of neurons and astrocytes, whereas microglia numbers were slightly reduced. We demonstrate lack of neuroinflammation and parenchymal responses in the brains of Treg-deficient mice, suggesting a minor Treg role in absence of blood-brain barrier breakdown.

13.
J Neuroinflammation ; 16(1): 248, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791351

RESUMO

BACKGROUND: Herpes simplex virus-1 (HSV-1) infections of the central nervous system (CNS) can result in HSV-1 encephalitis (HSE) which is characterized by severe brain damage and long-term disabilities. Different cell types including neurons and astrocytes become infected in the course of an HSE which leads to an activation of glial cells. Activated glial cells change their neurotrophic factor profile and modulate inflammation and repair. The superfamily of fibroblast growth factors (FGFs) is one of the largest family of neurotrophic factors comprising 22 ligands. FGFs induce pro-survival signaling in neurons and an anti-inflammatory answer in glial cells thereby providing a coordinated tissue response which favors repair over inflammation. Here, we hypothesize that FGF expression is altered in HSV-1-infected CNS cells. METHOD: We employed primary murine cortical cultures comprising a mixed cell population of astrocytes, neurons, microglia, and oligodendrocytes. Astrocyte reactivity was morphometrically monitored by an automated image analysis algorithm as well as by analyses of A1/A2 marker expression. Altered FGF expression was detected by quantitative real-time PCR and its paracrine FGF activity. In addition, HSV-1 mutants were employed to characterize viral factors important for FGF responses of infected host cells. RESULTS: Astrocytes in HSV-1-infected cortical cultures were transiently activated and became hypertrophic and expressed both A1- and A2-markers. Consistently, a number of FGFs were transiently upregulated inducing paracrine neurotrophic signaling in neighboring cells. Most prominently, FGF-4, FGF-8, FGF-9, and FGF-15 became upregulated in a switch-on like mechanism. This effect was specific for CNS cells and for a fully functional HSV-1. Moreover, the viral protein ICP0 critically mediated the FGF switch-on mechanism. CONCLUSIONS: HSV-1 uses the viral protein ICP0 for the induction of FGF-expression in CNS cells. Thus, we propose that HSV-1 triggers FGF activity in the CNS for a modulation of tissue response upon infection.


Assuntos
Córtex Cerebral/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Herpesvirus Humano 1/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Comunicação Parácrina/fisiologia , Proteínas Virais/metabolismo , Animais , Animais Recém-Nascidos , Córtex Cerebral/virologia , Chlorocebus aethiops , Técnicas de Cocultura , Cricetinae , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células Vero
14.
Brain Sci ; 9(9)2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31546798

RESUMO

(1) Background: Dimethylfumarate (DMF) has been approved for the treatment of relapsing remitting multiple sclerosis. However, the mode of action of DMF and its assumed active primary metabolite monomethylfumarate (MMF) is still not fully understood. Former reports suggest a neuroprotective effect of DMF mediated via astrocytes by reducing pro-inflammatory activation of these glial cells. We investigated potential direct effects of DMF and MMF on neuroprotective factors like neurotrophic factors and growth factors in astrocytes to elucidate further possible mechanisms of the mode of action of fumaric acids; (2) Methods: highly purified cultures of primary rat astrocytes were pre-treated in vitro with DMF or MMF and incubated with lipopolysaccharides (LPS) or a mixture of interferon gamma (IFN-γ) plus interleukin 1 beta (IL-1ß) in order to simulate an inflammatory environment. The gene expression of neuroprotective factors such as neurotrophic factors (nuclear factor E2-related factor 2 (NGF), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF)) and growth factors (fibroblast growth factor 2 (FGF2), platelet-derived growth factor subunit A (PDGFa), ciliary neurotrophic factor (CNTF)) as well as cytokines (tumor necrosis factor alpha (TNFα), interleukin 6 (IL-6), IL-1ß, inducible nitric oxide synthase (iNOS)) was examined by determining the transcription level with real-time quantitative polymerase chain reaction (qPCR); (3) Results: The stimulation of highly purified astrocytes with either LPS or cytokines changed the expression profile of growth factors and pro- inflammatory factors. However, the expression was not altered by either DMF nor MMF in unstimulated or stimulated astrocytes; (4) Conclusions: There was no direct influence of fumaric acids on neuroprotective factors in highly purified primary rat astrocytes. This suggests that the proposed potential neuroprotective effect of fumaric acid is not mediated by direct stimulation of neurotrophic factors in astrocytes but is rather mediated by other pathways or indirect mechanisms via other glial cells like microglia as previously demonstrated.

15.
J Mol Neurosci ; 68(2): 318, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30953282

RESUMO

The original version of this article unfortunately contained mistakes in the author group and affiliation sections. Author Markus H. Schwab's name was incorrectly presented as "H. Markus Schwab" and his affiliations were incorrectly assigned as "1 and 3" instead of "2 and 3".

16.
Int J Dev Neurosci ; 77: 39-47, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30716382

RESUMO

Microglia can adopt different activation patterns, ranging from a pro-inflammatory M1- to an anti-inflammatory M2-like phenotype in which they play crucial roles in various neuroinflammatory diseases. M2-like microglia are described to drive remyelination, whereas detrimental effects have been attributed to M1-like microglia. How polarized microglia might act on oligodendrocyte lineage cells indirectly by influencing astrocytes has not been studied in detail. In this study, conditioned media from polarized murine microglia were used to treat astrocytes and astrocytic gene expression was analyzed by microarray for genes known to influence oligodendrocyte lineage cells. Supernatants of astrocytes previously stimulated with soluble effectors from polarized microglia were used to investigate effects on oligodendrocyte precursor cells (OPC). Growth factors known to induce OPC proliferation, differentiation, and survival were upregulated in astrocytes treated with supernatants from M1-like microglia while M0- and M2-like microglia only had negligible effects on the expression of these factors in astrocytes. Despite the upregulation of these factors in M1 stimulated astrocytes there were no significant effects on OPC in vitro. All astrocyte supernatants induced proliferation of A2B5+ OPC and inhibited differentiation of OPC into mature oligodendrocytes. A trend toward enhanced migration of OPC was induced by M1 stimulated astrocytes. Our data suggest that M1-like microglia may potentially influence OPC and remyelination indirectly via astrocytes by inducing the expression of respective growth factors, however, this has no significant effect in addition to the already strong effects of unstimulated astrocytes on OPC. Nevertheless, the observed effect may be of relevance in other pathophysiological scenarios.


Assuntos
Astrócitos/metabolismo , Diferenciação Celular/fisiologia , Microglia/metabolismo , Oligodendroglia/metabolismo , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula , Polaridade Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Camundongos , Microglia/citologia , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos
17.
J Mol Neurosci ; 67(3): 484-493, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30680593

RESUMO

Growth factors play a crucial role during de- and remyelination of the central nervous system (CNS) due to their neurotrophic functions. We have previously shown that the growth factors neuregulin-1 (Nrg-1) and glial cell-derived neurotrophic factor (Gdnf) are upregulated during the first 2 weeks after induction of toxic demyelination in the CNS. Nevertheless, the factors responsible for Nrg-1/Gdnf upregulation and their effects on glia cells are unknown. We investigated the effect on Nrg-1 and Gdnf expressions after stimulation of primary mouse microglia or astrocytes with various pro- and anti-inflammatory factors. Additionally, primary cells were incubated with NRG-1 and/or GDNF followed by determining the gene expression level of their receptors, chemokines, and other growth factors. We demonstrate that inflammatory stimuli have a distinct impact on the expression of Gdnf, Nrg-1, and their receptors in astrocytes and microglia. In microglia, LPS or simultaneous treatment with IFNγ plus TNFα led to downregulation of Nrg-1, whereas LPS treatment slightly increased Nrg-1 expression in astrocytes. Furthermore, Gdnf was slightly upregulated after TFG-ß treatment in microglia, while Gdnf was significantly upregulated after LPS treatment in astrocytes. In contrast, treatment with GDNF or/and NRG-1 did not alter any measured gene expression in microglia or astrocytes. Taken together, our in vitro studies show that Nrg-1, Gdnf, and their receptors are differently regulated in astrocytes and microglia upon inflammatory stimuli. The lack of response of astrocytes and microglia to NRG-1 and GDNF suggests that both factors exert their effects directly on neurons.


Assuntos
Astrócitos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Microglia/metabolismo , Neuregulina-1/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Interferon gama/farmacologia , Camundongos , Microglia/efeitos dos fármacos , Neuregulina-1/genética , Fator de Necrose Tumoral alfa/farmacologia
18.
Cell Rep ; 25(1): 118-129.e4, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30282022

RESUMO

In sterile neuroinflammation, a pathological role is proposed for microglia, whereas in viral encephalitis, their function is not entirely clear. Many viruses exploit the odorant system and enter the CNS via the olfactory bulb (OB). Upon intranasal vesicular stomatitis virus instillation, we show an accumulation of activated microglia and monocytes in the OB. Depletion of microglia during encephalitis results in enhanced virus spread and increased lethality. Activation, proliferation, and accumulation of microglia are regulated by type I IFN receptor signaling of neurons and astrocytes, but not of microglia. Morphological analysis of myeloid cells shows that type I IFN receptor signaling of neurons has a stronger impact on the activation of myeloid cells than of astrocytes. Thus, in the infected CNS, the cross talk among neurons, astrocytes, and microglia is critical for full microglia activation and protection from lethal encephalitis.


Assuntos
Astrócitos/imunologia , Encefalite Viral/imunologia , Microglia/imunologia , Neurônios/imunologia , Receptor de Interferon alfa e beta/imunologia , Animais , Astrócitos/patologia , Comunicação Celular/imunologia , Encefalite Viral/genética , Encefalite Viral/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/patologia , Neurônios/patologia , Transdução de Sinais
19.
Exp Neurol ; 309: 54-66, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30048715

RESUMO

Multiple sclerosis is characterized by intermingled episodes of de- and remyelination and the occurrence of white- and grey-matter damage. To mimic the randomly distributed pathophysiological brain lesions observed in MS, we assessed the impact of focal white and grey matter demyelination on thalamic function by directing targeted lysolecithin-induced lesions to the capsula interna (CI), the auditory cortex (A1), or the ventral medial geniculate nucleus (vMGN) in mice. Pathophysiological consequences were compared with those of cuprizone treatment at different stages of demyelination and remyelination. Combining single unit recordings and auditory stimulation in freely behaving mice revealed changes in auditory response profile and electrical activity pattern in the thalamus, depending on the region of the initial insult and the state of remyelination. Cuprizone-induced general demyelination significantly diminished vMGN neuronal activity and frequency-specific responses. Targeted lysolecithin-induced lesions directed either to A1 or to vMGN revealed a permanent impairment of frequency-specific responses, an increase in latency of auditory responses and a reduction in occurrence of burst firing in vMGN neurons. These findings indicate that demyelination of grey matter areas in the thalamocortical system permanently affects vMGN frequency specificity and the prevalence of bursting in the auditory thalamus.


Assuntos
Potenciais de Ação/fisiologia , Doenças Desmielinizantes/patologia , Tálamo/fisiopatologia , Estimulação Acústica/métodos , Potenciais de Ação/efeitos dos fármacos , Animais , Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/fisiopatologia , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/fisiopatologia , Modelos Animais de Doenças , Feminino , Lateralidade Funcional , Corpos Geniculados/patologia , Gliose/induzido quimicamente , Gliose/patologia , Substância Cinzenta/patologia , Lisofosfatidilcolinas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Inibidores da Monoaminoxidase/toxicidade , Proteína Proteolipídica de Mielina/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Psicoacústica , Tálamo/efeitos dos fármacos
20.
J Mol Neurosci ; 65(1): 60-73, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29705933

RESUMO

Mesenchymal stem cells (MSCs) are regarded as an immune privileged cell type with numerous regeneration-promoting effects. The in vivo behavior of MSC and underlying mechanisms leading to their regenerative effects are largely unknown. The aims of this study were to comparatively investigate the in vivo behavior of canine (cMSC), human (hMSC), and murine MSC (mMSC) following intra-cerebroventricular transplantation. At 7 days post transplantation (dpt), clusters of cMSC, hMSC, and mMSC were detected within the ventricular system. At 49 dpt, cMSC-transplanted mice showed clusters mostly consisting of extracellular matrix lacking transplanted MSC. Similarly, hMSC-transplanted mice lacked MSC clusters at 49 dpt. Xenogeneic MSC transplantation was associated with a local T lymphocyte-dominated immune reaction at both time points. Interestingly, no associated inflammation was observed following syngeneic mMSC transplantation. In conclusion, transplanted MSC formed intraventricular cell clusters and exhibited a short life span in vivo. Xenogeneically in contrast to syngeneically transplanted MSC triggered a T cell-mediated graft rejection indicating that MSCs are not as immune privileged as previously assumed. However, MSC may mediate their effects by a "hit and run" mechanism and future studies will show whether syngeneically or xenogeneically transplanted MSCs exert better therapeutic effects in animals with CNS disease.


Assuntos
Ventrículos Cerebrais/cirurgia , Xenoenxertos/citologia , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Células-Tronco Mesenquimais/citologia , Animais , Células Cultivadas , Ventrículos Cerebrais/citologia , Cães , Feminino , Rejeição de Enxerto/imunologia , Xenoenxertos/imunologia , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA