RESUMO
Six organotin(IV) complexes, viz., [Me2Sn(L)] (1), [n-Bu2Sn(L)] (2), [n-Oct2Sn(L)] (3), [Bz2Sn(L)]·0.5C7H8 (4), [n-BuSn(L)Cl] (5), and [PhSn(L)Cl] (6), were synthesized using a 2,6-diacetylpyridine bis(2-hydroxybenzoylhydrazone), H2L. Compounds were characterized by Fourier transform infrared (FT-IR), High-resolution mass spectrometry (HRMS), and solutions Fourier transform nuclear magnetic resonance (FT-NMR) spectroscopies. The structures 1-6 were established by single-crystal X-ray diffraction (SC-XRD) analysis. Diffraction results evidenced that complexes 1-6 were seven-coordinated mononuclear species with the equatorial plane comprising the pentagonal N3O2 chelate ring of the doubly deprotonated L and two axial ligands, either R (R = Me, n-Bu, n-Oct, Bz) or R (n-Bu or Ph) and Cl ligands. Additionally, the photophysical properties were examined due to the enhanced conjugation and rigidity of the molecules while thermogravimetric analysis was carried out to evaluate the thermal stabilities of compounds. The anti-proliferative activity of the complexes 1-6 was tested against prostate cancer cells (DU-145) and normal human embryonic kidney cells (HEK-293). Among the compounds, dibutyltin compound 2 exhibited increased anti-proliferative activity, with an IC50 value of 6.16 ± 1.56 µM. The investigation of its mechanism of action involves using AO/EB (acridine orange/ethidium bromide) and ROS (reactive oxygen species) generation assays. This likely detects apoptotic morphological alterations in the nucleus of the cells, with ROS generation ultimately leading to apoptosis and cell death. The superior activity of 2 may be attributed to the C···H contacts and respective higher de outside and di inside distances from the Hirshfeld surface. Thus, these compounds could be a promising alternative to classical chemotherapy agents.
Assuntos
Antineoplásicos , Proliferação de Células , Compostos Orgânicos de Estanho , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Compostos Orgânicos de Estanho/química , Compostos Orgânicos de Estanho/farmacologia , Compostos Orgânicos de Estanho/síntese química , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Hidrazonas/química , Hidrazonas/farmacologia , Hidrazonas/síntese química , Cristalografia por Raios X , Estrutura Molecular , Piridinas/química , Piridinas/farmacologiaRESUMO
The novel hydrosoluble silver coordination polymer [Ag(NO3)(µ-1κN;2κN',Nâ³-TPMOH)]n (1) (TPMOH = tris(1H-pyrazol-1-yl)ethanol) was obtained and characterized. While single crystal X-ray diffraction analysis of compound 1 disclosed an infinite 1D helical chain structure in the solid state, NMR analysis in polar solvents confirmed the mononuclear nature of compound 1 in solution. Compound 1 and the analogue [Ag(µ-1κN;2κN',Nâ³-TPMS)]n (2) (TPMS = tris(1H-pyrazol-1-yl)methane sulfonate) were evaluated with regard to their antimicrobial activities towards the Gram-negative Escherichia coli, Pseudomonas aeruginosa, and Burkholderia contaminans, the Gram-positive Staphylococcus aureus, and the fungal species Candida albicans and Candida glabrata. Compound 1 exhibited minimal inhibitory concentration (MIC) values ranging from 2 to 7.7 µg/mL towards the tested Gram-negative bacteria, 18 µg/mL towards the Gram-positive S. aureus, and 15 and 31 µg/mL towards C. albicans and C. glabrata, respectively. Compound 2 was less effective towards the tested bacteria, with MIC values ranging from 15 to 19.6 µg/mL towards the Gram-negative bacteria and 51 µg/mL towards S. aureus; however, it was more effective against C. albicans and C. glabrata, with MIC values of about 6 µg/mL towards these fungal species. The toxicity of compounds 1 and 2 was assessed by evaluating the survival of the Caenorhabditis elegans model organism to concentrations of up to 100 µg/mL. The value of 50% lethality (LD50) could only be estimated as 73.2 µg/mL for compound 1 at 72 h, otherwise LD50 was >100 µg/mL for both compounds 1 and 2. These results indicate compounds 1 and 2 as novel silver complexes with interesting antimicrobial properties towards bacterial and fungal pathogens.
RESUMO
Two new porous three-dimensional cadmium(II) metal-organic frameworks (MOFs) containing thiophene-appended carboxylate acid ligands, formulated as [Cd(L1)(4,4'-Bipy)]n.2n(DMF) (1) and [Cd(L2)(4,4'-Bipy)]n.2n(DMF) (2) [where L1 = 5-{(thiophen-2-ylmethyl)amino}isophthalate, L2 = 5-{(thiophen-3-ylmethyl)amino}isophthalate, 4,4'-Bipy = 4,4'-bipyridine, and DMF = N,N'-dimethylformamide] have been synthesized and structurally characterized. The gas adsorption analysis of the activated MOFs shows that they specifically capture CO2 (uptake amount 4.36 mmol/g under 1 bar at 195 K) over N2 and CH4. Moreover, both MOFs show a gate-opening-closing phenomenon, which features the S-shaped isotherms with impressive hysteretic desorption during the CO2 adsorption-desorption process at 195 K. Ideal adsorbed solution theory (IAST) calculations of these MOFs displayed that the obtained selectivity values for CO2/CH4 (50:50) and CO2/N2 (15:85) are approximately 8.6-23 and 93-565, respectively. Configurational bias Monte Carlo simulation was performed to understand the mechanism behind the better CO2 adsorption by these MOFs. Catalytic activity of the MOFs for the CO2 fixation reactions with different epoxides to form cyclic carbonates were tested. These MOFs demonstrated a significantly high conversion (94-99%) of epichlorohydrin to the corresponding cyclic carbonate within 8 h of reaction time at 1 bar of CO2 pressure, at 70 °C, and they can be reused up to five cycles without losing considerably their activity.
RESUMO
In the present work, three novel halogen-appended cadmium(II) metal-organic frameworks [Cd2(L1)2(4,4'-Bipy)2]n·4n(DMF) (1), [Cd2(L2)2(4,4'-Bipy)2]n·3n(DMF) (2), and [Cd(L3)(4,4'-Bipy)]n·2n(DMF) (3) [where L1 = 5-{(4-bromobenzyl)amino}isophthalate; L2 = 5-{(4-chlorobenzyl)amino}isophthalate; L3 = 5-{(4-fluorobenzyl)amino}isophthalate; 4,4'-Bipy = 4,4'-bipyridine; and DMF = N,N'-dimethylformamide] have been synthesized under solvothermal conditions and characterized by various analytical techniques. The single-crystal X-ray diffraction analysis demonstrated that all the MOFs feature a similar type of three-dimensional structure having a binuclear [Cd2(COO)4(N)4] secondary building block unit. Moreover, MOFs 1 and 2 contain one-dimensional channels along the b-axis, whereas MOF 3 possesses a 1D channel along the a-axis. In these MOFs, the pores are decorated with multifunctional groups, i.e., halogen and amine. The gas adsorption analysis of these MOFs demonstrate that they display high uptake of CO2 (up to 5.34 mmol/g) over N2 and CH4. The isosteric heat of adsorption (Qst) value for CO2 at zero loadings is in the range of 18-26 kJ mol-1. In order to understand the mechanism behind the better adsorption of CO2 by our MOFs, we have also performed configurational bias Monte Carlo simulation studies, which confirm that the interaction between our MOFs and CO2 is stronger compared to those with N2 and CH4. Various noncovalent interactions, e.g., halogen (X)···O, Cd···O, and O···O, between CO2 and the halogen atom, the Cd(II) metal center, and the carboxylate group from the MOFs are observed, respectively, which may be a reason for the higher carbon dioxide adsorption. Ideal adsorbed solution theory (IAST) calculations of MOF 1 demonstrate that the obtained selectivity values for CO2/CH4 (50:50) and CO2/N2 (15:85) are ca. 28 and 193 at 273 K, respectively. However, upon increasing the temperature to 298 K, the selectivity value (S = 34) decreases significantly for the CO2/N2 mixture. We have also calculated the breakthrough analysis curves for all the MOFs using mixtures of CO2/CH4 (50:50) and CO2/N2 (50:50 and 15:85) at different entering gas velocities and observed larger retention times for CO2 in comparison with other gases, which also signifies the stronger interaction between our MOFs and CO2. Moreover, due to the presence of Lewis acidic metal centers, these MOFs act as heterogeneous catalysts for the CO2 fixation reactions with different epoxides in the presence of tetrabutyl ammonium bromide (TBAB), for conversion into industrially valuable cyclic carbonates. These MOFs exhibit a high conversion (96-99%) of epichlorohydrin (ECH) to the corresponding cyclic carbonate 4-(chloromethyl)-1,3-dioxolan-2-one after 12 h of reaction time at 1 bar of CO2 pressure, at 65 °C. The MOFs can be reused up to four cycles without compromising their structural integrity as well as without losing their activity significantly.
RESUMO
Convenient self-assembly synthesis of copper(II) complexes via double (phenylsilsesquioxane and acetate) ligation allows to isolate a family of impressive sandwich-like cage compounds. An intriguing feature of these complexes is the difference in the structure of a pair of silsesquioxane ligands despite identical (Cu6) nuclearity and number (four) of acetate fragments. Formation of particular combination of silsesquioxane ligands (cyclic/cyclic vs condensed/condensed vs cyclic/condensed) was found to be dependent on the synthesis/crystallization media. A combination of Si4-cyclic and Si6-condensed silsesquioxane ligands is a brand new feature of cage metallasilsesquioxanes. A representative Cu6-complex (4) (with cyclic silsesquioxanes) exhibited high catalytic activity in the oxidation of alkanes and alcohols with peroxides. Maximum yield of the products of cyclohexane oxidation attained 30 %. The compound 4 was also tested as catalyst in the Baeyer-Villiger oxidation of cyclohexanone by m-chloroperoxybenzoic acid: maximum yields of 88 % and 100 % of ϵ-caprolactone were achieved upon conventional heating at 50 °C for 4â h and MW irradiation at 70 or 80 °C during 30â min, respectively. It was also possible to obtain the lactone (up to 16 % yield) directly from the cyclohexane via a tandem oxidation/Baeyer-Villiger oxidation reaction using the same oxidant.
RESUMO
Oxygen evolution reaction (OER) electrocatalysts are frequently made from noble metal-based oxides like ruthenium/iridium oxides. However, because of their scarcity and high price, researchers are now focusing on creating innovative OER catalysts based on affordable transition metals that have improved electrical conductivity and accessibility to active sites. Metal-organic frameworks (MOFs), a unique class of inorganic materials with excellent physical and chemical properties, have witnessed significant progress in promising green energy systems. In this work, a novel mixed-ligand metal-organic framework [Co(µ-1κN,2κN'-BDP)(µ3-1κoo',2κo''2κo'''-BTC)]n·nH2O (BDP = boron-dipyrromethene or BODIPY; BTC = benzene tricarboxylate) denoted as CoBDPMOF has been synthesized, and its composites with different carbon materials have been designed. Compared to the pristine MOF, the composites showed enhanced electrocatalytic activity toward the oxygen evolution reaction (OER) in alkaline media. In addition, the CoBDPMOF with activated carbon showed the highest OER performance with a low Tafel slope (82 mV dec-1) and the highest j600 (59.8 mA cm-2), outperforming noble metal IrO2, the OER benchmark electrocatalyst. This study presents new insights into the design and application of CoBDPMOF-based materials for energy conversion and suggests promising avenues for further research and development in electrocatalysis.
RESUMO
A small family of nonanuclear Cu5Cs4-based phenylsilsesquioxanes 1-2 were prepared by a convenient self-assembly approach and characterized by X-ray diffraction studies. The compounds 1 and 2 show some unprecedented structural features such as the presence of a [Ph14Si14O28]14- silsesquioxane ligand and a CuII5CsI4 nuclearity in which the metal cations occupy unusual positions within the cluster. Copper ions are "wrapped" into a silsesquioxane matrix, while cesium ions are located in external positions. This resulted in cesium-involved aggregation of coordination polymer structures. Both compounds 1 and 2 realize specific metallocene (cesium-phenyl) linkage between neighboring cages. Compound 2 is evaluated as a catalyst in the Baeyer-Villiger (B-V) oxidation of cyclohexanone and tandem cyclohexane oxidation/B-V oxidation of cyclohexanone with m-chloroperoxybenzoic acid (mCPBA) as an oxidant, in an aqueous acetonitrile medium, and HNO3 as the promoter. A quantitative yield of ε-caprolactone was achieved under conventional heating at 50 °C for 4 h or MW irradiation for 30 min (for cyclohexanone as substrate); 17 and 19% yields of lactone upon MW irradiation at 80 °C for 30 min and heating at 50 °C for 4 h, respectively (for cyclohexane as a substrate), were achieved. Complex 2 was evaluated as a catalyst for the oxidation of alkanes to alkyl hydroperoxides and alcohols to ketones with peroxides at 60 °C in acetonitrile. The maximum yield of cyclohexane oxidation products was 30%. Complex 2 exhibits high activity in the oxidation of alcohols.
RESUMO
The N-alkylation of 1,3,5-triaza-7-phosphaadamantane (PTA) with ortho-, meta- and para-substituted nitrobenzyl bromide under mild conditions afforded three hydrophilic PTA ammonium salts, which were used to obtain a new set of seven water-soluble copper(I) complexes. The new compounds were fully characterized and their catalytic activity was investigated for the low power microwave assisted one-pot azide-alkyne cycloaddition reaction in homogeneous aqueous medium to obtain disubstituted 1,2,3-triazoles. The most active catalysts were immobilized on activated carbon (AC), multi-walled carbon nanotubes (CNT), as well as surface functionalized AC and CNT, with the most efficient support being the CNT treated with nitric acid and NaOH. In the presence of the immobilized catalyst, several 1,4-disubstituted-1,2,3-triazoles were obtained from the reaction of terminal alkynes, organic halides and sodium azide in moderate yields up to 80%. Furthermore, the catalyzed reaction of terminal alkynes, formaldehyde and sodium azide afforded 2-hydroxymethyl-2H-1,2,3-triazoles in high yields up to 99%. The immobilized catalyst can be recovered and recycled through simple workup steps and reused up to five consecutive cycles without a marked loss in activity. The described catalytic systems proceed with a broad substrate scope, under microwave irradiation in aqueous medium and according to "click rules".
RESUMO
Lanthanide complexes have attracted a widespread attention due to their structural diversity, as well as multifunctional and tunable properties. The development of lanthanide based functional materials has often relied on the design of the secondary coordination sphere of the corresponding lanthanide complexes. For instance, usually simple lanthanide salts (solvento complexes) do not catalyze effectively organic reactions or provide low yield of the expected product, whereas the presence of a suitable organic ligand with a noncovalent bond donor or acceptor centre (secondary coordination sphere) modifies the symmetry around the metal centre in lanthanide complexes which then successfully can act as catalysts in both homogenous and heterogenous catalysis. In this minireview, we discuss several relevant examples, based on X-ray crystal structure analyses, in which the hydrogen, halogen, chalcogen, pnictogen, tetrel and rare-earth bonds, as well as cation-π, anion-π, lone pair-π, π-π and pancake interactions, are used as a synthon in the decoration of the secondary coordination sphere of lanthanide complexes.
RESUMO
The new sterically hindered amido-phosphane 1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane-3,7-diylbis(phenylmethanone), DBPTA (1), has been obtained via an open-cage double N-acylation of 1,3,5-triaza-7-phosphadamantane (PTA) using benzoic anhydride. DBPTA is the only acyl derivative of PTA that contains an aromatic appendage. Due to the bulky nature of the benzoyl C(O)Ph groups, they exhibit mutual anti configuration as confirmed by solution NMR and single crystal X-ray diffraction. Compound 1 is readily soluble in common polar organic and green solvents, making it a very versatile ligand that could be used in a variety of reaction systems. To assess the coordination characteristics of the new phosphane, seven copper complexes of formulas [Cu(DBPTA)4]BF4 (2), [CuX(DBPTA)3] {X = Br (3) and I (4)}, [Cu(µ-X)(DBPTA)2]2 {X = Br (5) and I (6)}, [Cu(bpy)(DBPTA)2]Y {Y = BF4 (7) and BPh4 (8)} {bpy = 2,2'-bipyridine}, and three silver complexes with formulas [Ag(DBPTA)4]NO3 (9), [Ag(Tpm*)(DBPTA)]NO3 (10) and [Ag(Tpms)(DBPTA)] (11) {Tpm* = tris(3,5-dimethyl-1-pyrazolyl)methane, Tpms = tris(pyrazol-1-yl)methanesulfonate} have been synthesised. Compounds 1-11 were characterized by elemental analyses and electrospray ionization mass spectrometry (ESI-MS), as well as by FT-IR and NMR (1H, 13C, 31P, COSY and HSQC) spectroscopic techniques. The catalytic activity of the complexes has been investigated for 1,3-dipolar azide-alkyne cycloaddition reaction using glycerol as a reaction medium to afford 1,4-disubstituted-1,2,3-triazoles. Complex 7 was found to be the most efficient catalyst, affording triazoles in yields up to 97% after 18 h under standard bench experimental conditions (at 23 °C, aerobic conditions and in the absence of any additional bases) and up to 98% after 15 minutes under microwave irradiation (125 °C, 30 W). The catalysis proceeds with a broad substrate scope according to "Click" rules providing a significant contribution to "Green Chemistry".
RESUMO
One-pot reaction of the Schiff base N,N'-ethylene bis(salicylaldimine) (H2L), CoCl2.6H2O, and [Ph2SnCl2] in acetone produces the mixed valence CoIICoIII2 compound [CoIICoIII2(µ-L)2(Ph)2(µ-Cl)2]·(CH3)2CO·H2O (1). Our recent study already revealed that the same reaction mixtures in methanol or ethanol produced a heterometallic SnIVCoIII (2) or monometallic CoIII complex (3), respectively. Comparison of these organometallic systems shows that the 2,1-intermetallic Ph shift occurs in any of those solvents, but their relevant structural features (mononuclear, dinuclear-heterometallic, and trinuclear mixed valence) are solvent dependent. Geometrical structural rotation is also discussed among the related organometallic CoIICoIII2 systems. The AC magnetic susceptibility measurements indicate that 1 is a single molecule magnet (SMM), exhibiting a field-induced slow magnetic relaxation with two modes. The relaxation time for the low-frequency channel is as slow as τ~0.6 s at T = 2.0 K and BDC = 1.0 T.
Assuntos
Cobalto/química , Imãs/química , Solventes/química , Cristalografia por Raios X , Eletricidade , Campos Magnéticos , Conformação Molecular , Rotação , TemperaturaRESUMO
The new coordination polymers (CPs) [Zn(µ-1κO1:1κO2-L)(H2O)2]n·n(H2O) (1) and [Cd(µ4-1κO1O2:2κN:3,4κO3-L)(H2O)]n·n(H2O) (2) are reported, being prepared by the solvothermal reactions of 5-{(pyren-4-ylmethyl)amino}isophthalic acid (H2L) with Zn(NO3)2.6H2O or Cd(NO3)2.4H2O, respectively. They were synthesized in a basic ethanolic medium or a DMF:H2O mixture, respectively. These compounds were characterized by single-crystal X-ray diffraction, FTIR spectroscopy, thermogravimetric and elemental analysis. The single-crystal X-ray diffraction analysis revealed that compound 1 is a one dimensional linear coordination polymer, whereas 2 presents a two dimensional network. In both compounds, the coordinating ligand (L2-) is twisted due to the rotation of the pyrene ring around the CH2-NH bond. In compound 1, the Zn(II) metal ion has a tetrahedral geometry, whereas, in 2, the dinuclear [Cd2(COO)2] moiety acts as a secondary building unit and the Cd(II) ion possesses a distorted octahedral geometry. Recently, several CPs have been explored for the cyanosilylation reaction under conventional conditions, but microwave-assisted cyanosilylation of aldehydes catalyzed by CPs has not yet been well studied. Thus, we have tested the solvent-free microwave-assisted cyanosilylation reactions of different aldehydes, with trimethylsilyl cyanide, using our synthesized compounds, which behave as highly active heterogeneous catalysts. The coordination polymer 1 is more effective than 2, conceivably due to the higher Lewis acidity of the Zn(II) than the Cd(II) center and to a higher accessibility of the metal centers in the former framework. We have also checked the heterogeneity and recyclability of these coordination polymers, showing that they remain active at least after four recyclings.
Assuntos
Aldeídos/química , Cianetos/química , Micro-Ondas , Polímeros/química , Pirenos/química , Compostos de Trimetilsilil/química , Catálise , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Conformação Molecular , Polímeros/síntese química , Solventes , TermogravimetriaRESUMO
Two new benzimidazole Schiff base copper(ii) compounds [Cu(5-CH2PPh3-2-salmethylben)(NO3)(H2O)][BF4]·2/3(H2O)·1/3(MeOH) (1) and [Cu(5-CH2NEt3-2-salmethylben)(Cl)][BF4] (2) were synthesised by mixing 2-(1-methyl-1H-benzo[d]imidazol-2-yl)aniline, (3-formyl-4-hydroxybenzyl)triphenylphosphonium chloride or N,N-diethyl-N-(3-formyl-4-hydroxybenzyl)ethanaminium chloride and Cu(NO3)2·3H2O or CuCl2·2H2O in the presence of tetrafluoroborate in a binary mixture of MeOH : H2O under refluxing conditions. The structures of the compounds were established by elemental analysis, FT-IR, ESI-MS analytical techniques and, for 1, by single-crystal X-ray diffraction analysis. Absorption and fluorescence spectroscopic methods were performed to evaluate the calf thymus DNA interactions with the compounds. The calculated binding constants (Kb) of 3.14 × 105 M-1 for 1 and 3.20 × 105 M-1 for 2 were established. The intercalative DNA binding mode was also verified by molecular docking studies. Both compounds demonstrated a notable in vitro cytotoxic effect against human A-549 (lung carcinoma), MCF-7 (breast cancer) and HeLa (cervical cancer) cancer cell lines. A substantial repressive effect on the proliferation of MCF-7 cells (breast cancer cells) was observed for compound 1. The mechanism of action for the effective antiproliferative activity of 1 has additionally been confirmed by means of various biological studies such as morphological assessment through AO/EB, detection of apoptotic induction via Hoechst/PI dual staining, flow cytometry for detection of cell cycle arrest, quantitative analysis of apoptotic cells, DNA degradation, generation of reactive oxygen species (ROS) and by apoptotic induction through mitochondrial staining.
Assuntos
Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Neoplasias da Mama/tratamento farmacológico , Complexos de Coordenação/farmacologia , Cobre/farmacologia , DNA/efeitos dos fármacos , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzimidazóis/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Bovinos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cobre/química , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Teoria da Densidade Funcional , Ensaios de Seleção de Medicamentos Antitumorais , Estrogênios/metabolismo , Feminino , Humanos , Simulação de Acoplamento Molecular , Bases de Schiff/química , Bases de Schiff/farmacologiaRESUMO
The 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (DAPTA) derivatives, viz. the already reported 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane 5-oxide (DAPTA=O, 1), the novel 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane-5-sulfide (DAPTA=S, 2), and 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane-5-selenide (DAPTA=Se, 3), have been synthesized under mild conditions. They are soluble in water and most common organic solvents and have been characterized using 1H and 31P NMR spectroscopy and, for 2 and 3, also by single crystal X-ray diffraction. The effect of O, S, or Se at the phosphorus atom on the structural features of the compounds has been investigated, also through the analyses of Hirshfeld surfaces. The presence of 1-3 enhances the activity of copper for the catalytic azide-alkyne cycloaddition reaction in an aqueous medium. The combination of cheaply available copper (II) acetate and compound 1 has been used as a catalyst for the one-pot and 1,4-regioselective procedure to obtain 1,2,3-triazoles with high yields and according to 'click rules'.
Assuntos
Oxigênio/química , Fosfinas/química , Selênio/química , Sulfetos/química , Triazóis/química , Alcinos/química , Azidas/química , Catálise , Técnicas de Química Sintética , Reação de Cicloadição , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Fosfinas/síntese química , Solubilidade , Difração de Raios XRESUMO
The new 2D coordination polymers (CPs) [M(L)2(H2O)2]n [M = CoII (1) and NiII (2); L = 4-(pyridin-3-ylcarbamoyl)benzoate] were synthesized from pyridyl amide-functionalized benzoic acid (HL). They were characterized by elemental, Fourier transform infrared, thermogravimetric, powder X-ray diffraction (PXRD), and single-crystal X-ray diffraction (XRD) structural analyses. Single-crystal XRD analysis revealed the presence of a 2D polymeric architecture, and topological analyses disclose a 2,4-connected binodal net. A thermochromic effect leads to the production of two new CPs, 1' and 2', by heating at ca. 220 °C, accompanied by a color change from orange to purple in the case of 1 and from blue to green in the case of 2. The transformation of 1 to 1' takes place through an intermediate (1a) with a different twist of the L- ligand, leading to the formation of a 1D polymeric architecture, as proven by single-crystal XRD analysis. The addition of water or keeping 1' or 2' in air for several days leads to regeneration of 1 or 2, respectively. The thermochromic-triggered structural transformations of 1 and 2 were further substantiated by PXRD and UV-vis ground-state diffuse-reflectance absorption studies. The supercapacitance ability of the CPs 1 and 2 and a Ni-Co composite (made from mixing the CPs 1 and 2) was investigated by electroanalytical techniques, such as cyclic voltammetry and electrochemical impedance spectroscopy. The CP 2 exhibits the highest specific capacity of 273.8 C g-1 at an applied current density of 1.5 A g-1. These newly developed CPs further act as electrocatalysts for the water-splitting reaction.
RESUMO
The synthesis, crystal structures and magnetic properties are reported for three novel mixed-valence tetranuclear [MnII2MnIII2(HBuDea)2(BuDea)2(EBA)4] (1), [MnII2MnIII2(HBuDea)2(BuDea)2(DMBA)4] (2) and undecanuclear [MnII3MnIII8O4(OH)2(BuDea)6(DMBA)8] (3) clusters, where H2BuDea is N-butyldiethanolamine, HEBA is 2-ethylbutyric acid and HDMBA is 2,2-dimethylbutyric acid. The compounds have been prepared through self-assembly reactions of manganese(ii) chloride with H2BuDea and respective carboxylic acid in methanol solution in air, affording 1 with HEBA, and 2 or 3 with HDMBA, depending on the experimental conditions. The single crystal X-ray analysis reveals that 1 and 2 have similar centrosymmetric structures based on the {M4(µ3-O)2(µ-O)4} core, while 3 discloses the unprecedented {M11(µ-O)4(µ3-O)12} one. The Mn4 complexes display single-molecule magnet (SMM) behavior with a S = 9 spin ground state and a high energy barrier Ueff/kB of up to 51 K. The magnetic properties of 2 are successfully modeled with JMnIII-MnIII/hc = 25.7 cm-1 and two JMnIII-MnII/hc constants of 3.1 and -0.93 cm-1 (data correspond to the H = -Js1·s2 formalism). The Mn11 cluster exhibits a paramagnetic behavior with dominant antiferromagnetic coupling. A possible influence of intermolecular effects and of different peripheries of the magnetic cores designed by using 2-ethylbutyrate (in 1) or 2,2-dimethylbutyrate (in 2) on the magnetic properties of 1 and 2 is discussed. The experimental magnetostructural correlations for the {MnII2MnIII2(µ3-O)2(µ-O)4} cores, supported by broken symmetry DFT calculations, disclose the X-MnIIIMnIII angle and MnIII-O distance (where MnIII-X and MnIII-O are axial Jahn-Teller bonds) as the structural factors having the strongest influence on JMnIII-MnIII exchange coupling. It is shown that two JMnIII-MnII constants are necessary for the correct description of magnetic exchange couplings in the {MnII2MnIII2(µ3-O)2(µ-O)4} tetranuclear unit.
RESUMO
New CPs [Zn(µ-1κOO':2κN-L)(H2O)(BDC)0.5]n·n(DMF) (1), [Cd(µ-1κO:2κN-L)2(H2O)2]n (2), and [Pb(µ-1κOO':2κO'-L)(µ-1κO:2κO':3κN-L)]n (3) [L = 4-(pyridin-3-ylcarbamoyl)benzoate; BDC = benzene-1,4-dicarboxylate] were synthesized and characterized by elemental, FT-IR, powder, and single-crystal X-ray diffraction analyses. Single crystal X-ray diffraction analysis discloses 1D polymeric architectures for 1 and 2 and a 2D one for 3. The topological analysis exemplifies a 2,2,3-connected 3-nodal net with the point symbol {82·12}2{8}3 for 1, a 2,4-connected bimodal net for 2, and a 3,4,7-connected trinodal net for 3. CP 1 shows a selective removal of the Congo Red (CR) dye amongst various dyes. It can be recycled and reused without any significant loss of its dye removal efficiency. An insight into the selective removal of the Congo dye is provided by in silico studies, being accounted for by anion-π, cation-π, and π-π stacking interactions, involving the Zn(ii) ion, phenyl rings, and Ocarboxylate of L, and the phenyl rings, naphthalene rings, and Osulfonate of CR.
RESUMO
Solvothermal reactions between a pyridine based amide functionalized dicarboxylic acid, 4,4'-{(pyridine-2,6-dicarbonyl)bis(azanediyl)}dibenzoic acid (H2L), and zinc(ii) nitrate in the absence and presence of a base produced the binuclear metallomacrocyclic compound [Zn2(L)2(H2O)4]·2(H2O)·6(DMF) (1) and the metallomacrocyclic based two dimensional MOF [Zn5(L)4(OH)2(H2O)4]n·8n(DMF)·4n(H2O) (2), respectively. Compound 1 bears two tetrahedral Zn(ii) centres, whereas the 2D framework 2 includes a penta-nuclear Zn(ii) cluster as a secondary building block unit, with two of the metal cations assuming a tetrahedral type geometry and the remaining three an octahedral type geometry. The topological analyses reveal that compound 1 has a 2-connected uninodal net and framework 2 has a 2, 8-connected binodal net. These compounds heterogeneously catalyse the tandem deacetalization-Knoevenagel condensation reactions carried out under conventional heating, microwave irradiation or ultrasonic irradiation. Comparative studies show that ultrasonic irradiation (final product yield of 99% after 2 h of reaction time) provides the most favourable method (e.g., microwave irradiation leads to a final product yield of 91% after 3 h of reaction time). Moreover, the catalysts can be reused at least for five consecutive cycles without losing activity significantly.
RESUMO
The 1D Cu(II) coordination polymers [Cu3(L1)(NO3)4(H2O)2]n (1) and [Cu2(H2L2)(NO3)(H2O)2]n(NO3)n (2) have been synthesized using the aroylhyrazone Schiff bases N' 1,N' 2-bis(pyridin-2-ylmethylene)oxalohydrazide (H2L1) and N' 1,N' 3-bis(2-hydroxybenzylidene)malonohydrazide (H4L2), respectively. They have been characterized by elemental analysis, infrared (IR) spectroscopy, UV-Vis spectroscopy, electrospray ionization mass spectrometry (ESI-MS), single crystal X-ray diffraction and variable temperature magnetic susceptibility measurements (for 2). The ligand (L1)2- coordinates in the iminol form in 1, whereas the amide coordination is observed for (H2L2)2- in 2. Either the ligand bridge or the nitrate bridge in 2 mediates weak antiferromagnetic coupling. The catalytic performance of 1 and 2 has been investigated toward the solvent-free microwave-assisted oxidation of a secondary alcohol (1-phenylethanol used as model substrate). At 120°C and in the presence of the nitroxyl radical 2,2,6,6-tetramethylpiperydil-1-oxyl (TEMPO), the complete conversion of 1-phenylethanol into acetophenone occurs with TOFs up to 1,200 h-1.
RESUMO
The nitro-Mannich (aza-Henry) reaction, in which a nitroalkane and an imine react to form a ß-nitroamine, is a versatile tool for target-oriented synthesis. Although the first stereoselective reaction was developed only 20 years ago, and enantioselective and diastereoselective versions for the synthesis of non-racemic compounds soon after, there are nowadays a variety of reliable methods which can be used for the synthesis of APIs and other biologically active substances. Hence many anticancer drugs, antivirals, antimicrobials, enzyme inhibitors and many more substances, containing C-N bonds, have been synthesized using this reaction. Several transition metal complexes and organocatalysts were shown to be compatible with the presence of a wide range of functional groups in these molecules, and very high levels of asymmetric induction have been achieved in some cases. The reaction has also been applied in cascade processes. The structural diversity of the products, ranging from simple heterocycles or azabicycles to complex alkaloids, iminosugars, amino acids or diamino acids and phosphonates, shows the versatility of the nitro-Mannich reaction and its potential for future developments.