Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Schizophr Res ; 249: 25-37, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-32513544

RESUMO

Clinical and preclinical studies suggest that some of the behavioral alterations observed in schizophrenia (SZ) may be mechanistically linked to synaptic dysfunction of glutamatergic signaling. Recent genetic and proteomic studies suggest alterations of cortical glutamate receptors of the AMPA-type (AMPARs), which are the predominant ligand-gated ionic channels of fast transmission at excitatory synapses. The impact of gene and protein alterations on the electrophysiological activity of AMPARs is not known in SZ. In this proof of principle work, using human postmortem brain synaptic membranes isolated from the dorsolateral prefrontal cortex (DLPFC), we combined electrophysiological analysis from microtransplanted synaptic membranes (MSM) with transcriptomic (RNA-Seq) and label-free proteomics data in 10 control and 10 subjects diagnosed with SZ. We observed in SZ a reduction in the amplitude of AMPARs currents elicited by kainate, an agonist of AMPARs that blocks the desensitization of the receptor. This reduction was not associated with protein abundance but with a reduction in kainate's potency to activate AMPARs. Electrophysiologically-anchored dataset analysis (EDA) was used to identify synaptosomal proteins that linearly correlate with the amplitude of the AMPARs responses, gene ontology functional annotations were then used to determine protein-protein interactions. Protein modules associated with positive AMPARs current increases were downregulated in SZ, while protein modules that were upregulated in SZ were associated with decreased AMPARs currents. Our results indicate that transcriptomic and proteomic alterations, frequently observed in the DLPFC in SZ, converge at the synaptic level producing a functional electrophysiological impairment of AMPARs.


Assuntos
Receptores de AMPA , Esquizofrenia , Humanos , Receptores de AMPA/genética , Transmissão Sináptica/fisiologia , Esquizofrenia/genética , Proteômica , Ácido Caínico
2.
Genet Med ; 23(9): 1715-1725, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34054129

RESUMO

PURPOSE: To investigate the effect of PLXNA1 variants on the phenotype of patients with autosomal dominant and recessive inheritance patterns and to functionally characterize the zebrafish homologs plxna1a and plxna1b during development. METHODS: We assembled ten patients from seven families with biallelic or de novo PLXNA1 variants. We describe genotype-phenotype correlations, investigated the variants by structural modeling, and used Morpholino knockdown experiments in zebrafish to characterize the embryonic role of plxna1a and plxna1b. RESULTS: Shared phenotypic features among patients include global developmental delay (9/10), brain anomalies (6/10), and eye anomalies (7/10). Notably, seizures were predominantly reported in patients with monoallelic variants. Structural modeling of missense variants in PLXNA1 suggests distortion in the native protein. Our zebrafish studies enforce an embryonic role of plxna1a and plxna1b in the development of the central nervous system and the eye. CONCLUSION: We propose that different biallelic and monoallelic variants in PLXNA1 result in a novel neurodevelopmental syndrome mainly comprising developmental delay, brain, and eye anomalies. We hypothesize that biallelic variants in the extracellular Plexin-A1 domains lead to impaired dimerization or lack of receptor molecules, whereas monoallelic variants in the intracellular Plexin-A1 domains might impair downstream signaling through a dominant-negative effect.


Assuntos
Anormalidades do Olho , Transtornos do Neurodesenvolvimento , Animais , Anormalidades do Olho/genética , Estudos de Associação Genética , Humanos , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Receptores de Superfície Celular , Peixe-Zebra/genética
3.
Genes (Basel) ; 12(3)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802862

RESUMO

Parkinson's disease (PD) is typically sporadic; however, multi-incident families provide a powerful platform to discover novel genetic forms of disease. Their identification supports deciphering molecular processes leading to disease and may inform of new therapeutic targets. The LRRK2 p.G2019S mutation causes PD in 42.5-68% of carriers by the age of 80 years. We hypothesise similarly intermediately penetrant mutations may present in multi-incident families with a generally strong family history of disease. We have analysed six multiplex families for missense variants using whole exome sequencing to find 32 rare heterozygous mutations shared amongst affected members. Included in these mutations was the KCNJ15 p.R28C variant, identified in five affected members of the same family, two elderly unaffected members of the same family, and two unrelated PD cases. Additionally, the SIPA1L1 p.R236Q variant was identified in three related affected members and an unrelated familial case. While the evidence presented here is not sufficient to assign causality to these rare variants, it does provide novel candidates for hypothesis testing in other modestly sized families with a strong family history. Future analysis will include characterisation of functional consequences and assessment of carriers in other familial cases.


Assuntos
Sequenciamento do Exoma/métodos , Proteínas Ativadoras de GTPase/genética , Mutação de Sentido Incorreto , Doença de Parkinson/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Feminino , Predisposição Genética para Doença , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Linhagem
4.
Epilepsia ; 61(7): e71-e78, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645220

RESUMO

Fibroblast growth-factor homologous factor (FHF1) gene variants have recently been associated with developmental and epileptic encephalopathy (DEE). FHF1 encodes a cytosolic protein that modulates neuronal sodium channel gating. We aim to refine the electroclinical phenotypic spectrum of patients with pathogenic FHF1 variants. We retrospectively collected clinical, genetic, neurophysiologic, and neuroimaging data of 17 patients with FHF1-DEE. Sixteen patients had recurrent heterozygous FHF1 missense variants: 14 had the recurrent p.Arg114His variant and two had a novel likely pathogenic variant p.Gly112Ser. The p.Arg114His variant is associated with an earlier onset and more severe phenotype. One patient carried a chromosomal microduplication involving FHF1. Twelve patients carried a de novo variant, five (29.5%) inherited from parents with gonadic or somatic mosaicism. Seizure onset was between 1 day and 41 months; in 76.5% it was within 30 days. Tonic seizures were the most frequent seizure type. Twelve patients (70.6%) had drug-resistant epilepsy, 14 (82.3%) intellectual disability, and 11 (64.7%) behavioral disturbances. Brain magnetic resonance imaging (MRI) showed mild cerebral and/or cerebellar atrophy in nine patients (52.9%). Overall, our findings expand and refine the clinical, EEG, and imaging phenotype of patients with FHF1-DEE, which is characterized by early onset epilepsy with tonic seizures, associated with moderate to severe ID and psychiatric features.


Assuntos
Encefalopatias/genética , Epilepsia/genética , Fatores de Crescimento de Fibroblastos/genética , Deficiência Intelectual/genética , Fenótipo , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Encefalopatias/diagnóstico por imagem , Encefalopatias/fisiopatologia , Criança , Pré-Escolar , Eletroencefalografia/métodos , Epilepsia/diagnóstico por imagem , Epilepsia/fisiopatologia , Feminino , Humanos , Lactente , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/fisiopatologia , Masculino , Estudos Retrospectivos , Adulto Jovem
6.
Mol Brain ; 12(1): 92, 2019 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-31707987

RESUMO

We report the identification of a de novo GABRA1 (R214C) variant in a child with epileptic encephalopathy (EE), describe its functional characterization and pathophysiology, and evaluate its potential therapeutic options. The GABRA1 (R214C) variant was identified using whole exome sequencing, and the pathogenic effect of this mutation was investigated by comparing wild-type (WT) α1 and R214C α1 GABAA receptor-expressing HEK cells. GABA-evoked currents in these cells were recorded using whole-cell, outside-out macro-patch and cell-attached single-channel patch-clamp recordings. Changes to surface and total protein expression levels of WT α1 and R214C α1 were quantified using surface biotinylation assay and western blotting, respectively. Finally, potential therapeutic options were explored by determining the effects of modulators, including diazepam, insulin, and verapamil, on channel gating and receptor trafficking of WT and R214C GABAA receptors. We found that the GABRA1 (R214C) variant decreased whole-cell GABA-evoked currents by reducing single channel open time and both surface and total GABAA receptor expression levels. The GABA-evoked currents in R214C GABAA receptors could only be partially restored with benzodiazepine (diazepam) and insulin. However, verapamil treatment for 24 h fully restored the function of R214C mutant receptors, primarily by increasing channel open time. We conclude that the GABRA1 (R214C) variant reduces channel activity and surface expression of mutant receptors, thereby contributing to the pathogenesis of genetic EE. The functional restoration by verapamil suggests that it is a potentially new therapeutic option for patients with the R214C variant and highlights the value of precision medicine in the treatment of genetic EEs.


Assuntos
Epilepsia/genética , Epilepsia/fisiopatologia , Mutação/genética , Receptores de GABA-A/genética , Sequência de Aminoácidos , Criança , Canais de Cloreto/metabolismo , Diazepam/farmacologia , Eletroencefalografia , Epilepsia/diagnóstico por imagem , Feminino , Genótipo , Células HEK293 , Humanos , Insulina/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Cinética , Imageamento por Ressonância Magnética , Fenótipo , Subunidades Proteicas/genética , Receptores de GABA-A/química , Verapamil/farmacologia
7.
Front Neurol ; 10: 434, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164858

RESUMO

Targeted whole-exome sequencing (WES) is a powerful diagnostic tool for a broad spectrum of heterogeneous neurological disorders. Here, we aim to examine the impact on diagnosis, treatment and cost with early use of targeted WES in early-onset epilepsy. WES was performed on 180 patients with early-onset epilepsy (≤5 years) of unknown cause. Patients were classified as Retrospective (epilepsy diagnosis >6 months) or Prospective (epilepsy diagnosis <6 months). WES was performed on an Ion Proton™ and variant reporting was restricted to the sequences of 620 known epilepsy genes. Diagnostic yield and time to diagnosis were calculated. An analysis of cost and impact on treatment was also performed. A molecular diagnoses (pathogenic/likely pathogenic variants) was achieved in 59/180 patients (33%). Clinical management changed following WES findings in 23 of 59 diagnosed patients (39%) or 13% of all patients. A possible diagnosis was identified in 21 additional patients (12%) for whom supporting evidence is pending. Time from epilepsy onset to a genetic diagnosis was faster when WES was performed early in the diagnostic process (mean: 145 days Prospective vs. 2,882 days Retrospective). Costs of prior negative tests averaged $8,344 per patient in the Retrospective group, suggesting savings of $5,110 per patient using WES. These results highlight the diagnostic yield, clinical utility and potential cost-effectiveness of using targeted WES early in the diagnostic workup of patients with unexplained early-onset epilepsy. The costs and clinical benefits are likely to continue to improve. Advances in precision medicine and further studies regarding impact on long-term clinical outcome will be important.

8.
Eur J Pediatr ; 178(8): 1207-1218, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31172278

RESUMO

Genetic disorders are one of the leading causes of infant mortality and are frequent in neonatal intensive care units (NICUs). Rapid genome-wide sequencing (GWS; whole genome or exome sequencing (ES)), due to its diagnostic capabilities and immediate impacts on medical management, is becoming an appealing testing option in the NICU setting. RAPIDOMICS was a trio-based rapid ES pilot study of 25 babies with suspected genetic disorders in the BC Women's Hospital NICU. ES and bioinformatic analysis were performed after careful patient ascertainment. Trio analysis was performed using an in-house pipeline reporting variants in known disease-causing genes. Variants interpreted by the research team as definitely or possibly causal of the infant's phenotype were Sanger validated in a clinical laboratory. The average time to preliminary diagnosis was 7.2 days. Sanger validation was pursued in 15 patients for 13 autosomal dominant and 2 autosomal recessive disorders, with an overall diagnostic rate (partial or complete) of 60%.Conclusion: In total, 72% of patients enrolled had a genomic diagnosis achieved through ES, multi-gene panel testing or chromosomal microarray analysis. Among these, there was an 83% rate of significant and immediate impact on medical decision-making directly related to new knowledge of the diagnosis. Health service implementation challenges and successes are discussed. What is Known: • Rapid genome-wide sequencing in the neonatal intensive care setting has a greater diagnostic hit rate and impact on medical management than conventional genetic testing. However, the impact of consultation with genetics and patient ascertainment requires further investigation. What is New: • This study demonstrates the importance of genetic consultation and careful patient selection prior to pursuing exome sequencing (ES). • In total, 15/25 (60%) patients achieved a diagnosis through ES and 18/25 (72%) through ES, multi-gene panel testing or chromosomal microarray analysis with 83% of those having immediate effects on medical management.


Assuntos
Sequenciamento do Exoma/métodos , Doenças Genéticas Inatas/diagnóstico , Testes Genéticos/métodos , Unidades de Terapia Intensiva Neonatal , Terapia Intensiva Neonatal/métodos , Tomada de Decisão Clínica/métodos , Estado Terminal , Feminino , Aconselhamento Genético , Doenças Genéticas Inatas/genética , Humanos , Recém-Nascido , Masculino , Análise em Microsséries , Avaliação de Resultados em Cuidados de Saúde , Seleção de Pacientes , Projetos Piloto
9.
J Child Neurol ; 34(12): 728-734, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31208268

RESUMO

KCNT1 encodes a sodium-activated potassium channel highly expressed in the brain, regulating hyperpolarization following repetitive firing. Mutations in KCNT1 were originally implicated in autosomal-dominant nocturnal frontal lobe epilepsy and epilepsy of infancy with migrating focal seizures. It is now known that there is variability in phenotypic expression and incomplete penetrance. We describe 2 patients with KCNT1-related epilepsy, one with epilepsy of infancy with migrating focal seizures and one with multifocal epilepsy. As most patients with KCNT1 variants have treatment-resistant epilepsy, drugs that specifically target the KCNT1 channel have been of great interest. Quinidine, a broad-spectrum potassium channel blocker, has shown promise; however, clinical trial results have been variable. Our patient with epilepsy of infancy with migrating focal seizures did not respond to a trial of quinidine at 6 weeks of age-one of the earliest reported quinidine trials in the literature for KCNT1-related epilepsy. This indicates that timing of treatment and response may not be related. Both patients responded to high-dose phenobarbital. The patient with epilepsy of infancy with migrating focal seizures also had a significant reduction in seizures with potassium bromide (KBr). Our data suggest that alternative therapies to quinidine should be considered as a therapeutic option for patients with KCNT1-related epilepsy. Although improved seizure control led to parent-reported improvements in neurodevelopment, it is unknown if phenobarbital and KBr impact the overall developmental trajectory of patients with KCNT1-related epilepsy. Further multicenter longitudinal studies are required.


Assuntos
Anticonvulsivantes/uso terapêutico , Brometos/uso terapêutico , Epilepsia/tratamento farmacológico , Mutação , Proteínas do Tecido Nervoso/genética , Fenobarbital/uso terapêutico , Canais de Potássio Ativados por Sódio/genética , Compostos de Potássio/uso terapêutico , Pré-Escolar , Quimioterapia Combinada , Eletroencefalografia , Epilepsia/genética , Evolução Fatal , Humanos , Lactente , Masculino , Resultado do Tratamento
10.
BMC Med Genet ; 20(1): 95, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31151415

RESUMO

BACKGROUND: Tubulinopathies result from mutations in tubulin genes, including TUBG1, responsible for cell microtubules, are characterized by brain development abnormalities, microcephaly, early-onset epilepsy, and motor impairment. Only eleven patients with TUBG1 mutations have been previously described in literature to our knowledge. Here we present two new patients with novel de novo TUBG1 mutations and review other cases in the literature. CASE PRESENTATIONS: Both patients have microcephaly and intellectual disability. Patient B further fits a more typical presentation, with well-controlled epilepsy and mild hypertonia, whereas Patient A's presentation is much milder without these other features. CONCLUSION: This report expands the spectrum of TUBG1 mutation manifestations, suggesting the possibility of less severe phenotypes for patients and families, and influencing genetic counselling strategies.


Assuntos
Predisposição Genética para Doença/genética , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Tubulina (Proteína)/genética , Criança , Feminino , Humanos , Lactente , Masculino , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Índice de Gravidade de Doença
11.
Parkinsonism Relat Disord ; 49: 34-41, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29329938

RESUMO

INTRODUCTION: Family based study designs provide an informative resource to identify disease-causing mutations. The Queensland Parkinson's Project (QPP) has been involved in numerous genetic screening studies; however, details of the families enrolled into the register have not been comprehensively reported. This article characterises the families enrolled in the QPP and summarises monogenic forms of hereditary Parkinsonism found in the register. METHOD: The presence of pathogenic point mutations and copy number variations (CNVs) were, generally, screened in a sample of over 1000 PD patients from the total of 1725. Whole exome sequencing (WES) was performed on eighteen probands from multiplex families. RESULTS: The QPP contains seventeen incidences of confirmed monogenic forms of PD, including LRRK2 p.G2019S, VPS35 p.D620N, SNCA duplications and PARK2 p.G430D (hom) & exon 4 deletion (hom). Of these seventeen, five belong to multi-incident families, while another eight have a family history of at least one other case of PD. In additional families, WES did not identify known forms of monogenic Parkinsonism; however, three heterozygous mutations in PARK2, p.R275W, p.Q34fs, and a 40bp deletion in exon 3 were identified. Of these three mutations, only the 40bp deletion segregated with disease in a dominant inheritance pattern. CONCLUSION: Eighteen probands have screened negative for known CNVs and mutations that cause clear monogenic forms of PD. Each family is a candidate for further genetic analysis to identify genetic variants segregating with disease. The families enrolled in the QPP provide a useful resource to aid in identifying novel forms of monogenic PD.


Assuntos
Sequenciamento do Exoma , Predisposição Genética para Doença , Transtornos Parkinsonianos/genética , Sistema de Registros , Adulto , Idoso , Variações do Número de Cópias de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Mutação Puntual , Queensland
12.
J Mov Disord ; 11(1): 45-48, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29316780

RESUMO

Mutations in presenilin 1 (PSEN1) are the most common cause of autosomal dominant Alzheimer's disease. Here, we report a Canadian-Vietnamese family carrying a PSEN1 p.Met233Val mutation with an exceptionally early and severe presentation that includes a wide range of atypical symptoms, including prominent ataxia, Parkinsonism, spasticity, dystonia, action tremor, myoclonus, bulbar symptoms, seizures, hallucinations and behavioral changes. Whole-exome sequencing (WES) was performed on the affected proband after many assessments over several years proved diagnostically inconclusive. The results were analyzed using the AnnEx "Annotated Exomes" browser (http://annex.can.ubc.ca), a web-based platform that facilitates WES variant annotation and interpretation. High-throughput sequencing can be especially informative for complex neurological disorders, and WES warrants consideration as a first-line clinical test. Data analyses facilitated by web-based bioinformatics tools have great potential for novel insight, although confirmatory, diagnostically accredited Sanger sequencing is recommended prior to reporting.

13.
Parkinsonism Relat Disord ; 47: 39-44, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29191473

RESUMO

OBJECTIVE: Dyskinesia is a known side-effect of the treatment of Parkinson's Disease (PD). We examined the influence of haplotypes in three dopamine receptors (DRD1, DRD2 and DRD3) and the Brain Derived Neurotrophic Factor (BDNF) on dyskinesia. METHODS: Patient data were drawn from a population-based case-control study. We included 418 patients with confirmed diagnoses by movement disorder specialists, using levodopa and a minimum three years disease duration at the time of assessment. Applying Haploview and Phase, we created haploblocks for DRD1-3 and BDNF. Risk scores for DRD2 and DRD3 were generated. We calculated risk ratios using Poisson regression with robust error variance. RESULTS: There was no difference in dyskinesia prevalence among carriers of various haplotypes in DRD1. However, one haplotype in each DRD2 haploblocks was associated with a 29 to 50% increase in dyskinesia risk. For each unit increase in risk score, we observed a 16% increase in dyskinesia risk for DRD2 (95%CI: 1.05-1.29) and a 17% (95%CI: 0.99-1.40) increase for DRD3. The BDNF haploblock was not associated, but the minor allele of the rs6265 SNP was associated with dyskinesia (adjusted RR 1.31 (95%CI: 1.01-1.70)). CONCLUSION: Carriers of DRD2 risk haplotypes and possibly the BDNF variants rs6265 and DRD3 haplotypes, were at increased risk of dyskinesia, suggesting that these genes may be involved in dyskinesia related pathomechanisms. PD patients with these genetic variants might be prime candidates for treatments aiming to prevent or delay the onset of dyskinesia.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Discinesia Induzida por Medicamentos/genética , Doença de Parkinson/genética , Receptores Dopaminérgicos/genética , Idoso , Estudos de Casos e Controles , Planejamento em Saúde Comunitária , Discinesia Induzida por Medicamentos/etiologia , Feminino , Seguimentos , Estudos de Associação Genética , Haplótipos , Humanos , Levodopa/efeitos adversos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/tratamento farmacológico , Estudos Retrospectivos
14.
Front Neurol ; 9: 1021, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619023

RESUMO

Chronic alpha-synuclein (SNCA) overexpression is a relatively homogenous and well-defined cause of parkinsonism and dementia. Parkinson's disease (PD), PD with dementia, dementia with Lewy bodies and multiple system atrophy all manifest in SNCA multiplication families. Herein we summarize genealogic, clinical and genetic data from 59 families (25 not previously published) with parkinsonism caused by SNCA multiplications. Longitudinal clinical assessments and genealogic relationships were documented for all family members. All probands were genotyped with an Illumina MEGA high-density genotyping array to identify copy number variants (CNV) and enable SNCA multiplication breakpoints to be defined. Three SNCA short tandem repeat (STR) markers were genotyped in all available samples to validate genomic dosage and inheritance. A web-application was built as a forum for future data sharing. CNV analysis identified 49 subjects with heterozygous SNCA duplication (CNV3), 2 with homozygous duplication (CNV4) and 7 with a triplication mutation (CNV4). Clinical presentations varied greatly throughout the cohort. SNCA dosage correlates with disease onset (mean age of onset CNV3: 46.9 ± 10.5 years vs. 34.5 ± 7.4 CNV4, p = 0.003). Atypical or more severe clinical courses were described in several patients and dementia was noted in 50.9% of the probands. Neither the multiplication size (average 2.05 ± 2.45 Mb) nor the number of genes included (range 1-50) was associated with motor symptom onset or dementia. Families with SNCA multiplication are rare and globally-distributed. Nevertheless, they may both inform and benefit from the development of SNCA targeted therapeutic strategies relevant to the treatment of all alpha-synucleinopathies.

15.
Ann Neurol ; 82(4): 640-646, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28892570

RESUMO

Biallelic DNAJC12 mutations were described in children with hyperphenylalaninemia, neurodevelopmental delay, and dystonia. We identified DNAJC12 homozygous null variants (c.187A>T;p.K63* and c.79-2A>G;p.V27Wfs*14) in two kindreds with early-onset parkinsonism. Both probands had mild intellectual disability, mild nonprogressive, motor symptoms, sustained benefit from small dose of levodopa, and substantial worsening of symptoms after levodopa discontinuation. Neuropathology (Proband-A) revealed no alpha-synuclein pathology, and substantia nigra depigmentation with moderate cell loss. DNAJC12 transcripts were reduced in both patients. Our results suggest that DNAJC12 mutations (absent in 500 early-onset patients with Parkinson's disease) rarely cause dopa-responsive nonprogressive parkinsonism in adulthood, but broaden the clinical spectrum of DNAJC12 deficiency. Ann Neurol 2017;82:640-646.


Assuntos
Antiparkinsonianos/uso terapêutico , Levodopa/uso terapêutico , Mutação/genética , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/genética , Proteínas Repressoras/genética , Adulto , Peptídeos beta-Amiloides/metabolismo , Aminas Biogênicas/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Análise Mutacional de DNA , Proteínas de Ligação a DNA/metabolismo , Saúde da Família , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Parkinsonianos/patologia , Fenilalanina/metabolismo , Proteína Sequestossoma-1/metabolismo , Adulto Jovem , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
16.
Am J Hum Genet ; 101(2): 300-310, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28777935

RESUMO

Massively parallel sequencing has revealed many de novo mutations in the etiology of developmental and epileptic encephalopathies (EEs), highlighting their genetic heterogeneity. Additional candidate genes have been prioritized in silico by their co-expression in the brain. Here, we evaluate rare coding variability in 20 candidates nominated with the use of a reference gene set of 51 established EE-associated genes. Variants within the 20 candidate genes were extracted from exome-sequencing data of 42 subjects with EE and no previous genetic diagnosis. We identified 7 rare non-synonymous variants in 7 of 20 genes and performed Sanger sequence validation in affected probands and parental samples. De novo variants were found only in SLC1A2 (aka EAAT2 or GLT1) (c.244G>A [p.Gly82Arg]) and YWHAG (aka 14-3-3γ) (c.394C>T [p.Arg132Cys]), highlighting the potential cause of EE in 5% (2/42) of subjects. Seven additional subjects with de novo variants in SLC1A2 (n = 1) and YWHAG (n = 6) were subsequently identified through online tools. We identified a highly significant enrichment of de novo variants in YWHAG, establishing their role in early-onset epilepsy, and we provide additional support for the prior assignment of SLC1A2. Hence, in silico modeling of brain co-expression is an efficient method for nominating EE-associated genes to further elucidate the disorder's etiology and genotype-phenotype correlations.


Assuntos
Proteínas 14-3-3/genética , Predisposição Genética para Doença , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Espasmos Infantis/genética , Adolescente , Adulto , Sequência de Aminoácidos , Criança , Transportador 2 de Aminoácido Excitatório , Exoma/genética , Feminino , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Fenótipo , Adulto Jovem
17.
Pediatr Neurol ; 75: 87-90, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28811059

RESUMO

BACKGROUND: Pathogenic heterozygous variants in the ATP1A2 gene have most commonly been associated with familial hemiplegic migraine. However, a wide spectrum of phenotypes that include alternating hemiplegia of childhood and epilepsy have been described. PATIENT DESCRIPTION: We describe a boy who presented at age three months with a complex phenotype that included epilepsy, nonepileptic paroxysmal events, and recurrent hemiplegia. Magnetic resonance imaging demonstrated unilateral cortical edema during a severe episode of hemiplegia that was followed by a persistent mild hemiparesis. RESULTS: Whole-exome sequencing identified a previously reported ATP1A2 missense variant (p.Arg548Cys) classified as pathogenic and a novel missense variant (p.Arg1008Trp) classified as a variant of uncertain significance. After this genetic diagnosis, treatment with flunarizine was initiated and no further episodes of hemiplegia have occurred. CONCLUSIONS: This is only the second report of compound heterozygosity of the ATP1A2 gene. It demonstrates the spectrum of paroxysmal neurological events that can arise as a result of ATP1A2 variants, with unique features overlapping alternating hemiplegia of childhood, hemiplegic migraine, and epilepsy. This child illustrates the diagnostic challenges that these disorders can present and the importance of genetic diagnosis in guiding management.


Assuntos
Epilepsia/genética , Hemiplegia/genética , Mutação/genética , ATPase Trocadora de Sódio-Potássio/genética , Pré-Escolar , Eletroencefalografia , Epilepsia/diagnóstico por imagem , Hemiplegia/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Fenótipo
18.
Am J Hum Genet ; 101(1): 65-74, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28669405

RESUMO

KCNQ5 is a highly conserved gene encoding an important channel for neuronal function; it is widely expressed in the brain and generates M-type current. Exome sequencing identified de novo heterozygous missense mutations in four probands with intellectual disability, abnormal neurological findings, and treatment-resistant epilepsy (in two of four). Comprehensive analysis of this potassium channel for the four variants expressed in frog oocytes revealed shifts in the voltage dependence of activation, including altered activation and deactivation kinetics. Specifically, both loss-of-function and gain-of-function KCNQ5 mutations, associated with increased excitability and decreased repolarization reserve, lead to pathophysiology.


Assuntos
Epilepsia/genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Canais de Potássio KCNQ/genética , Mutação/genética , Eletroencefalografia , Humanos , Ativação do Canal Iônico , Canais de Potássio KCNQ/química , Proteínas Mutantes/química , Proteínas Mutantes/genética , Fenótipo , Alinhamento de Sequência
19.
Parkinsonism Relat Disord ; 40: 69-72, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28462804

RESUMO

OBJECTIVE: We describe a Korean family in SCA2 with long-duration levodopa-responsive parkinsonism without cerebellar ataxia. METHODS: Clinical evaluation, genetic testing, and extensive imaging studies were done. RESULTS: All family members showed a typical Parkinson's disease phenotype without cerebellar ataxia for a long disease duration (up to 34 years). Genetic testing showed 40 CAG repeats and 4 CAA interruptions which is the longest repeat number among the families or patients manifesting with a parkinsonian phenotype without ataxia. Structural imaging (7T MRI and brain CT) showed a normal cerebellum and functional images showed nigrostriatal dopaminergic degeneration and normal D2 receptor binding activity, in agreement with the clinical phenotype. CONCLUSION: SCA2 should be considered as a cause of typical Parkinson's disease phenotype even in the absence of cerebellar ataxia.


Assuntos
Ataxina-2/genética , Predisposição Genética para Doença , Mutação/genética , Doença de Parkinson/genética , Idoso , Ataxinas/genética , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Ataxias Espinocerebelares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA