Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Clin Invest ; 134(8)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386425

RESUMO

Loss of arterial smooth muscle cells (SMCs) and abnormal accumulation of the extracellular domain of the NOTCH3 receptor (Notch3ECD) are the 2 core features of CADASIL, a common cerebral small vessel disease caused by highly stereotyped dominant mutations in NOTCH3. Yet the relationship between NOTCH3 receptor activity, Notch3ECD accumulation, and arterial SMC loss has remained elusive, hampering the development of disease-modifying therapies. Using dedicated histopathological and multiscale imaging modalities, we could detect and quantify previously undetectable CADASIL-driven arterial SMC loss in the CNS of mice expressing the archetypal Arg169Cys mutation. We found that arterial pathology was more severe and Notch3ECD accumulation greater in transgenic mice overexpressing the mutation on a wild-type Notch3 background (TgNotch3R169C) than in knockin Notch3R170C/R170C mice expressing this mutation without a wild-type Notch3 copy. Notably, expression of Notch3-regulated genes was essentially unchanged in TgNotch3R169C arteries. We further showed that wild-type Notch3ECD coaggregated with mutant Notch3ECD and that elimination of 1 copy of wild-type Notch3 in TgNotch3R169C was sufficient to attenuate Notch3ECD accumulation and arterial pathology. These findings suggest that Notch3ECD accumulation, involving mutant and wild-type NOTCH3, is a major driver of arterial SMC loss in CADASIL, paving the way for NOTCH3-lowering therapeutic strategies.


Assuntos
CADASIL , Camundongos , Animais , Receptor Notch3/genética , CADASIL/genética , CADASIL/metabolismo , CADASIL/patologia , Agregados Proteicos , Receptores Notch/genética , Receptores Notch/metabolismo , Artérias/patologia , Camundongos Transgênicos , Mutação
2.
J Cereb Blood Flow Metab ; 42(4): 613-629, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34644209

RESUMO

Blood brain barrier (BBB) disruption is a critical component of the pathophysiology of cognitive impairment of vascular etiology (VCI) and associated with Alzheimer's disease (AD). The Wnt pathway plays a crucial role in BBB maintenance, but there is limited data on its role in cognitive pathologies. The E3 ubiquitin ligase PDZRN3 is a regulator of the Wnt pathway. In a murine model of VCI, overexpressing Pdzrn3 in endothelial cell (EC) exacerbated BBB hyperpermeability and accelerated cognitive decline. We extended these observations, in both VCI and AD models, showing that EC-specific depletion of Pdzrn3, reinforced the BBB, with a decrease in vascular permeability and a subsequent spare in cognitive decline. We found that in cerebral vessels, Pdzrn3 depletion protects against AD-induced Wnt target gene alterations and enhances endothelial tight junctional proteins. Our results provide evidence that Wnt signaling could be a molecular link regulating BBB integrity and cognitive decline under VCI and AD pathologies.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Ubiquitina-Proteína Ligases , Doença de Alzheimer/metabolismo , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Células Endoteliais/metabolismo , Homeostase , Camundongos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
FASEB J ; 34(1): 1288-1303, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914666

RESUMO

Retinopathies remain major causes of visual impairment in diabetic patients and premature infants. Introduction of anti-angiogenic drugs targeting vascular endothelial growth factor (VEGF) has transformed therapy for these proliferative retinopathies. However, limitations associated with anti-VEGF medications require to unravel new pathways of vessel growth to identify potential drug targets. Here, we investigated the role of Wnt/Frizzled-7 (Fzd7) pathway in a mouse model of oxygen-induced retinopathy (OIR). Using transgenic mice, which enabled endothelium-specific and time-specific Fzd7 deletion, we demonstrated that Fzd7 controls both vaso-obliteration and neovascular phases (NV). Deletion of Fzd7 at P12, after the ischemic phase of OIR, prevented formation of aberrant neovessels into the vitreous by suppressing proliferation of endothelial cells (EC) in tufts. Next we validated in vitro two Frd7 blocking strategies: a monoclonal antibody (mAbFzd7) against Fzd7 and a soluble Fzd7 receptor (CRD). In vivo a single intravitreal microinjection of mAbFzd7 or CRD significantly attenuated retinal neovascularization (NV) in mice with OIR. Molecular analysis revealed that Fzd7 may act through the activation of Wnt/ß-catenin and Jagged1 expression to control EC proliferation in extra-retinal neovessels. We identified Fzd7/ß-catenin signaling as new regulator of pathological retinal NV. Fzd7 appears to be a potent pharmacological target to prevent or treat aberrant angiogenesis of ischemic retinopathies.


Assuntos
Retinopatia Diabética/metabolismo , Isquemia/metabolismo , Proteínas Repressoras/metabolismo , Neovascularização Retiniana/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Deleção de Genes , Isquemia/genética , Isquemia/patologia , Proteína Jagged-1/biossíntese , Proteína Jagged-1/genética , Camundongos , Camundongos Mutantes , Proteínas Repressoras/genética , Neovascularização Retiniana/genética , Neovascularização Retiniana/patologia , beta Catenina/genética
4.
Genetics ; 204(4): 1447-1460, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27707786

RESUMO

Identifying synthetic lethal interactions has emerged as a promising new therapeutic approach aimed at targeting cancer cells directly. Here, we used the yeast Saccharomyces cerevisiae as a simple eukaryotic model to screen for mutations resulting in a synthetic lethality with 5-amino-4-imidazole carboxamide ribonucleoside (AICAR) treatment. Indeed, AICAR has been reported to inhibit the proliferation of multiple cancer cell lines. Here, we found that loss of several histone-modifying enzymes, including Bre1 (histone H2B ubiquitination) and Set1 (histone H3 lysine 4 methylation), greatly enhanced AICAR inhibition on growth via the combined effects of both the drug and mutations on G1 cyclins. Our results point to AICAR impacting on Cln3 subcellular localization and at the Cln1 protein level, while the bre1 or set1 deletion affected CLN1 and CLN2 expression. As a consequence, AICAR and bre1/set1 deletions jointly affected all three G1 cyclins (Cln1, Cln2, and Cln3), leading to a condition known to result in synthetic lethality. Significantly, these chemo-genetic synthetic interactions were conserved in human HCT116 cells. Indeed, knock-down of RNF40, ASH2L, and KMT2D/MLL2 induced a highly significant increase in AICAR sensitivity. Given that KMT2D/MLL2 is mutated at high frequency in a variety of cancers, this synthetic lethal interaction has an interesting therapeutic potential.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Antineoplásicos/farmacologia , Evolução Molecular , Histonas/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ribonucleotídeos/farmacologia , Saccharomyces cerevisiae/genética , Aminoimidazol Carboxamida/farmacologia , Ciclinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células HCT116 , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Ligação Proteica/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Tripeptidil-Peptidase 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA