Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Transplant Cell Ther ; 28(1): 46.e1-46.e7, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34757218

RESUMO

Graft failure (GF) is a life-threatening complication after allogeneic hematopoietic stem cell transplantation (HCT). In the absence of autologous recovery, a second HCT is necessary to attempt to prevent death due to prolonged pancytopenia. Previous studies describing outcomes of second HCT performed after GF with different types of donor sources report wide ranges of overall survival (OS) and transplantation-related mortality (TRM); however, studies including a large number of patients undergoing a second HCT with umbilical cord blood (UCB) as the graft source are scarce. This retrospective registry-based study examined data extracted from Eurocord and the European Society for Blood and Marrow Transplantation (EBMT) databases to evaluate outcomes of 247 UCBTs performed in EBMT transplant centers after GF following a previous HCT. Data were analyzed separately for patients with malignant diseases (n = 141) and those with nonmalignant diseases (n = 106). The most frequent HCT that resulted in GF was also UCBT (65.0% for patients with malignant diseases and 68.9% for those with nonmalignant diseases), and most GFs occurred within 100 days after transplantation (92.3% and 85.9%, respectively). The median follow-up was 47 months for surviving patients with malignant diseases and 38 months for those with nonmalignant diseases. We observed a similar cumulative incidence of neutrophil engraftment of 59.1% (95% confidence interval [CI], 51.4% to 67.9%) and 60.4% (95% CI, 51.7%-70.6%), respectively, at a median time of 23 days and 24 days, correspondingly. The 3-year OS was 28.9% (95% CI, 21.8% to 37.3%) in the malignant disease group and 49.1% (95% CI, 39.5%-58.8%) in the nonmalignant disease group. In patients with malignancies, TRM was 39.9% (95% CI, 32.5% to 49.1%) at 100 days and 57.5% (95% CI, 49.4%-66.8%) at 3 years. In multivariate analyses, none of the characteristics studied was statistically significantly associated with engraftment or OS. Although survival is not optimal in patients requiring a second HCT, UCBT remains a valid life-saving option for patients with GF.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Transplante de Células-Tronco de Sangue do Cordão Umbilical/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Estudos Retrospectivos , Condicionamento Pré-Transplante
2.
Hematol Transfus Cell Ther ; 43 Suppl 2: S13-S21, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34794791

RESUMO

Chimeric antigen receptor T (CAR-T) cell therapy is a novel therapeutic modality for acute lymphoblastic leukemia (ALL) with robust outcomes in patients with refractory or relapsed disease. At the same time, CAR-T cell therapy is associated with unique and potentially fatal toxicities, such as cytokine release syndrome (CRS) and neurological toxicities (ICANS). This manuscript aims to provide a consensus of specialists in the fields of Hematology Oncology and Cellular Therapy to make recommendations on the current scenario of the use of CAR-T cells in patients with ALL.

3.
Hematol Transfus Cell Ther ; 43 Suppl 2: S22-S29, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34794792

RESUMO

The treatment and evolution of B-cell non-Hodgkin lymphoma (B-NHL) has undergone important changes in the last years with the emergence of targeted therapies, such as monoclonal antibodies, small molecules, antibody-drug conjugates, and bispecific antibodies. Nevertheless, a significant portion of patients remains refractory or relapsed (R/R) to the new therapeutic modalities, representing thus an unmet medical need. The use of CAR-T cells for the treatment of B-NHL patients has shown to be a promising therapy with impressive results in patients with R/R disease. The expectations are as high as the imminent approval of CAR-T cell therapy in Brazil, which it is expected to impact the prognosis of R/R B-NHL. The aim of this manuscript is to offer a consensus of specialists in the field of onco-hematology and cellular therapy, working in Brazil and United States, in order to discuss and offer recommendations in the present setting of the use of CAR-T cells for patients with B-NHL.

4.
Hematol Transfus Cell Ther ; 43 Suppl 2: S3-S12, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34794793

RESUMO

Chimeric antigen receptor T-cells (CAR-T cells) are a new modality of oncological treatment which has demonstrated impressive response in refractory or relapsed diseases, such as acute lymphoblastic leukemia (ALL), lymphomas, and myeloma but is also associated with unique and potentially life-threatening toxicities. The most common adverse events (AEs) include cytokine release syndrome (CRS), neurological toxicities, such as the immune effector cell-associated neurotoxicity syndrome (ICANS), cytopenias, infections, and hypogammaglobulinemia. These may be severe and require admission of the patient to an intensive care unit. However, these AEs are manageable when recognized early and treated by a duly trained team. The objective of this article is to report a consensus compiled by specialists in the fields of oncohematology, bone marrow transplantation, and cellular therapy describing recommendations on the Clinical Centers preparation, training of teams that will use CAR-T cells, and leading clinical questions as to their use and the management of potential complications.

5.
Hematol Transfus Cell Ther ; 43 Suppl 2: S35-S41, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34794795

RESUMO

Chimeric antigen receptor T cells (CAR-T), especially against CD19 marker, present in lymphomas and acute B leukemia, enabled a revolution in the treatment of hematologic neoplastic diseases. The manufacture of CAR-T cells requires the adoption of GMP-compatible methods and it demands the collection of mononuclear cells from the patient (or from the donor), generally through the apheresis procedure, T cell selection, activation, transduction and expansion ex vivo, and finally storage, usually cryopreserved, until the moment of their use. An important aspect is the quality control testing of the final product, for example, the characterization of its identity and purity, tests to detect any contamination by microorganisms (bacteria, fungi, and mycoplasma) and its potency. The product thawing and intravenous infusion do not differ much from what is established for the hematopoietic progenitor cell product. After infusion, it is important to check for the presence and concentration of CAR-T cells in the patient's peripheral blood, as well as to monitor their clinical impact, for instance, the occurrence of short-term, such as cytokine release syndrome and neurological complications, and long-term complications, which require patient follow-up for many years.

6.
Hematol Transfus Cell Ther ; 43 Suppl 2: S54-S63, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34794798

RESUMO

Currently, there are four CAR-T products commercially available on the market. CAR-T cells have shown high remission rates and they represent an effective treatment option for patients with resistant or refractory B cell malignancies. Approval of these cell therapy products came after an extended period of preclinical evaluation that demonstrated unprecedented efficacy in this difficult-to-treat patient population. This review article outlines the main preclinical evaluations needed for CAR T cell product development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA