Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Vaccines (Basel) ; 11(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38006037

RESUMO

Breakthrough infections in SARS-CoV-2 vaccinated individuals are an ideal circumstance for the simultaneous exploration of both the vaccine-induced memory reaction to the spike (S) protein and the primary response to the membrane (M) and nucleocapsid (N) proteins generated by natural infection. We monitored 15 healthcare workers who had been vaccinated with two doses of Pfizer BioNTech BNT162b2 and were then later infected with the SARS-CoV-2 B.1.617.2. (Delta) variant, analysing the antiviral humoral and cellular immune responses. Natural infection determined an immediate and sharp rise in anti-RBD antibody titres and in the frequency of both S-specific antibody secreting cells (ASCs) and memory B lymphocytes. T cells responded promptly to infection by activating and expanding already at 2-5 days. S-specific memory and emerging M- and N-specific T cells both expressed high levels of activation markers and showed effector capacity with similar kinetics but with different magnitude. The results show that natural infection with SARS-CoV-2 in vaccinated individuals induces fully functional and rapidly expanding T and B lymphocytes in concert with the emergence of novel virus-specific T cells. This swift and punctual response also covers viral variants and captures a paradigmatic case of a healthy adaptive immune reaction to infection with a mutating virus.

2.
Front Immunol ; 13: 890298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979352

RESUMO

The composition of the intestinal microbiota plays a critical role in shaping the immune system. Modern lifestyle, the inappropriate use of antibiotics, and exposure to pollution have significantly affected the composition of commensal microorganisms. The intestinal microbiota has been shown to sustain inappropriate autoimmune responses at distant sites in animal models of disease, and may also have a role in immune-mediated central nervous system (CNS) diseases such as multiple sclerosis (MS). We studied the composition of the gut mycobiota in fecal samples from 27 persons with MS (pwMS) and in 18 healthy donors (HD), including 5 pairs of homozygous twins discordant for MS. We found a tendency towards higher fungal abundance and richness in the MS group, and we observed that MS twins showed a higher rate of food-associated strains, such as Saccharomyces cerevisiae. We then found that in pwMS, a distinct population of cells with antibacterial and antifungal activity is expanded during the remitting phase and markedly decreases during clinically and/or radiologically active disease. These cells, named MAIT (mucosal-associated invariant T cells) lymphocytes, were significantly more activated in pwMS compared to HD in response to S. cerevisiae and Candida albicans strains isolated from fecal samples. This activation was also mediated by fungal-induced IL-23 secretion by innate immune cells. Finally, immunofluorescent stainings of MS post-mortem brain tissues from persons with the secondary progressive form of the disease showed that MAIT cells cross the blood-brain barrier (BBB) and produce pro-inflammatory cytokines in the brain. These results were in agreement with the hypothesis that dysbiosis of the gut microbiota might determine the inappropriate response of a subset of pathogenic mucosal T cells and favor the development of systemic inflammatory and autoimmune diseases.


Assuntos
Microbioma Gastrointestinal , Células T Invariantes Associadas à Mucosa , Esclerose Múltipla , Animais , Encéfalo , Linfócitos T CD8-Positivos/patologia , Saccharomyces cerevisiae
3.
Mult Scler ; 28(12): 1937-1943, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35723265

RESUMO

BACKGROUND: Development of long-lasting anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) T-cell responses in persons with multiple sclerosis (pwMS) treated with ocrelizumab is questioned. OBJECTIVE: Investigate antiviral T-cell responses after infection with SARS-CoV-2 in ocrelizumab-treated pwMS. Control groups included ocrelizumab-treated pwMS without SARS-CoV-2 infection, and non-MS individuals with and without SARS-CoV-2 infection. METHODS: Peripheral blood mononuclear cells were stimulated with SARS-CoV-2 peptide pools and T-cell reactivity was assessed by ELISPOT for interferon (IFN)-γ detection, and by multiparametric fluorescence-activated cell sorting (FACS) analyses for assessment and characterization of T-cell activation. RESULTS: ELISPOT assay against the spike and the N protein of SARS-CoV-2 displayed specific T-cell reactivity in 28/29 (96%) pwMS treated with ocrelizumab and infected by SARS-CoV-2, similar to infected persons without MS. This reactivity was present 1 year after infection and independent from the time of ocrelizumab infusion. FACS analysis following stimulation with SARS-CoV-2 peptide pools showed the presence of activation-induced markers (AIMs) in both CD4+ and CD8+ T-cell subsets in 96% and 92% of these individuals, respectively. Within naïve AIM+ CD4+ and CD8+ T-cells, we detected T memory stem cells, suggesting the acquisition of long-term memory. CONCLUSIONS: B-cell depletion using ocrelizumab does not impair the development of long-lasting anti-SARS-CoV-2 T-cell responses.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais Humanizados , Antivirais , Linfócitos T CD8-Positivos , Humanos , Memória Imunológica , Interferons , Leucócitos Mononucleares , Peptídeos , RNA Viral , Células-Tronco
4.
Brain Sci ; 12(5)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35625004

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is characterized by the progressive degeneration of upper or lower motor neurons, leading to muscle wasting and paralysis, resulting in respiratory failure and death. The precise ALS aetiology is poorly understood, mainly due to clinical and genetic heterogeneity. Thus, the identification of reliable biomarkers of disease could be helpful in clinical practice. In this study, we investigated whether the levels of brain-derived neurotrophic factor (BDNF) and its precursor Pro-BDNF in serum and cerebrospinal fluid (CSF) may reflect the pathological changes related to ALS. We found higher BDNF and lower Pro-BDNF levels in ALS sera compared to healthy controls. BDNF/Pro-BDNF ratio turned out to be accurate in distinguishing ALS patients from controls. Then, the correlations of these markers with several ALS clinical variables were evaluated. This analysis revealed three statistically significant associations: (1) Patients carrying the C9orf72 expansion significantly differed from non-carrier patients and showed serum BDNF levels comparable to control subjects; (2) BDNF levels in CSF were significantly higher in ALS patients with faster disease progression; (3) lower serum levels of Pro-BDNF were associated with a shorter survival. Therefore, we suggest that BDNF and Pro-BDNF, alone or in combination, might be used as ALS prognostic biomarkers.

5.
Front Immunol ; 13: 850404, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634316

RESUMO

Saccharomyces cerevisiae is a commensal yeast colonizer of mucosal surfaces and an emerging opportunistic pathogen in the mucosa and bloodstream. The role of S. cerevisiae has been largely characterized in peripheral blood mononuclear cells and monocyte-derived dendritic cells, where yeast cells induce the production of inflammatory cytokines through the interaction with mannose receptors, chitin receptors, DC SIGN, and dectin1. However, the response of blood-circulating dendritic cells (DCs) to S. cerevisiae has never been investigated. Among blood DCs, conventional DCs (cDCs) are producers of inflammatory cytokines, while plasmacytoid DCs (pDCs) are a specialized population producing a large amount of interferon (IFN)-α, which is involved in the antiviral immune response. Here we report that both human DC subsets are able to sense S. cerevisiae. In particular, cDCs produce interleukin (IL)-6, express activation markers, and promotes T helper 17 cell polarization in response to yeasts, behaving similarly to monocyte-derived DCs as previously described. Interestingly, pDCs, not cDCs, sense fungal nucleic acids, leading to the generation of P1-pDCs (PD-L1+CD80-), a pDC subset characterized by the production of IFN-α and the induction of a Th profile producing IL-10. These results highlight a novel role of pDCs in response to S. cerevisiae that could be important for the regulation of the host microbiota-immune system balance and of anti-fungal immune response.


Assuntos
Células Dendríticas , Saccharomyces cerevisiae , Citocinas/metabolismo , Células Dendríticas/classificação , Células Dendríticas/microbiologia , Humanos , Interferon-alfa/metabolismo , Interleucina-6/metabolismo
6.
J Neurol ; 269(9): 5085-5092, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35575811

RESUMO

BACKGROUND: Cognitive and behavioural symptoms due to involvement of the central nervous system (CNS) are among the main clinical manifestations of Myotonic Dystrophy type 1 (DM1). Such symptoms affect patients' quality of life and disease awareness, impacting on disease prognosis by reducing compliance to medical treatments. Therefore, CNS is a key therapeutic target in DM1. Deeper knowledge of DM1 pathogenesis is prompting development of potential disease-modifying therapies: as DM1 is a rare, multisystem and slowly progressive disease, there is need of sensitive, tissue-specific prognostic and monitoring biomarkers in view of forthcoming clinical trials. Circulating Neurofilament light chain (NfL) levels have been recognized as a sensitive prognostic and monitoring biomarker of neuroaxonal damage in various CNS disorders. METHODS: We performed a cross-sectional study in a cohort of 40 adult DM1 patients, testing if serum NfL might be a potential biomarker of CNS involvement also in DM1. Moreover, we collected cognitive data, brain MRI, and other DM1-related diagnostic findings for correlation studies. RESULTS: Mean serum NfL levels resulted significantly higher in DM1 (25.32 ± 28.12 pg/ml) vs 22 age-matched healthy controls (6.235 ± 0.4809 pg/ml). Their levels positively correlated with age, and with one cognitive test (Rey's Auditory Verbal learning task). No correlations were found either with other cognitive data, or diagnostic parameters in the DM1 cohort. CONCLUSIONS: Our findings support serum NfL as a potential biomarker of CNS damage in DM1, which deserves further evaluation on larger cross-sectional and longitudinal studies to test its ability in assessing brain disease severity and/or progression.


Assuntos
Distrofia Miotônica , Adulto , Biomarcadores , Estudos Transversais , Humanos , Filamentos Intermediários , Distrofia Miotônica/complicações , Distrofia Miotônica/diagnóstico por imagem , Distrofia Miotônica/psicologia , Proteínas de Neurofilamentos , Qualidade de Vida
7.
Cancers (Basel) ; 14(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35626170

RESUMO

In the present study, we characterized the metabolic background of different Acute Myeloid Leukemias' (AMLs) cells and described a heterogeneous and highly flexible energetic metabolism. Using the Seahorse XF Agilent, we compared the metabolism of normal hematopoietic progenitors with that of primary AML blasts and five different AML cell lines. We assessed the efficacy and mechanism of action of the association of high doses of ascorbate, a powerful oxidant, with the metabolic inhibitor buformin, which inhibits mitochondrial complex I and completely shuts down mitochondrial contributions in ATP production. Primary blasts from seventeen AML patients, assayed for annexin V and live/dead exclusion by flow cytometry, showed an increase in the apoptotic effect using the drug combination, as compared with ascorbate alone. We show that ascorbate inhibits glycolysis through interfering with HK1/2 and GLUT1 functions in hematopoietic cells. Ascorbate combined with buformin decreases mitochondrial respiration and ATP production and downregulates glycolysis, enhancing the apoptotic effect of ascorbate in primary blasts from AMLs and sparing normal CD34+ bone marrow progenitors. In conclusion, our data have therapeutic implications especially in fragile patients since both agents have an excellent safety profile, and the data also support the clinical evaluation of ascorbate-buformin in association with different mechanism drugs for the treatment of refractory/relapsing AML patients with no other therapeutic options.

8.
Cells ; 11(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35456036

RESUMO

Women with multiple sclerosis (MS) can safely become pregnant and give birth, with no side effects or impediments. Pregnancy is generally accepted as a period of well-being in which relapses have a softer evolution, particularly in the third trimester. Herein, we hypothesized that the placenta, via its "secretome", could contribute to the recognized beneficial effects of pregnancy on MS activity. We focused on a well-known receptor/ligand/decoy receptor system, such as the one composed by the receptor activator of nuclear factor-kB (RANK), its ligand (RANKL), and the decoy receptor osteoprotegerin (OPG), which have never been investigated in an integrated way in MS, pregnancy, and placenta. We reported that pregnancy at the term of gestation influences the balance between circulating RANKL and its endogenous inhibitor OPG in MS women. We demonstrated that the placenta at term is an invaluable source of homodimeric OPG. By functional studies on astrocytes, we showed that placental OPG suppresses the mRNA expression of the CCL20, a chemokine responsible for Th17 cell recruitment. We propose placental OPG as a crucial molecule for the recognized beneficial effect of late pregnancy on MS and its potential utility for the development of new and more effective therapeutic approaches.


Assuntos
Esclerose Múltipla , Feminino , Humanos , Ligantes , Esclerose Múltipla/metabolismo , Osteoprotegerina/metabolismo , Placenta/metabolismo , Gravidez , Ligação Proteica , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo
9.
JAMA Netw Open ; 5(4): e2210871, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35452102

RESUMO

Importance: The emergence of the highly contagious Omicron variant of SARS-CoV-2 and the findings of a significantly reduced neutralizing potency of sera from individuals with previous SARS-CoV-2 infection or vaccination highlights the importance of studying cellular immunity to estimate the degree of immune protection to the new SARS-CoV-2 variant. Objective: To determine T-cell reactivity to the Omicron variant in individuals with established (natural and/or vaccine-induced) immunity to SARS-CoV-2. Design, Setting, and Participants: This was a cohort study conducted between December 20 and 21, 2021, at the Santa Lucia Foundation Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy, among health care worker and scientist volunteers. Lymphocytes from freshly drawn blood samples were isolated and immediately tested for reactivity to the spike protein of SARS-CoV-2. Main Outcomes and Measures: The main outcomes were the measurement of T-cell reactivity to the mutated regions of the spike protein of the Omicron BA.1 SARS-CoV-2 variant and the assessment of remaining T-cell immunity to the spike protein by stimulation with peptide libraries. Results: A total of 61 volunteers (mean (range) age, 41.62 (21-62) years; 38 women [62%]) with different vaccination and SARS-CoV-2 infection backgrounds were enrolled. The median (range) frequency of CD4+ T cells reactive to peptides covering the mutated regions in the Omicron variant was 0.039% (0%-2.356%), a decrease of 64% compared with the frequency of CD4+ cells specific for the same regions of the ancestral strain (0.109% [0%-2.376%]). Within CD8+ T cells, a median (range) of 0.02% (0%-0.689%) of cells recognized the mutated spike regions, while 0.039% (0%-3.57%) of cells were reactive to the equivalent unmutated regions, a reduction of 49%. However, overall reactivity to the peptide library of the full-length protein was largely maintained (estimated 87%). No significant differences in loss of immune recognition were identified between groups of participants with different vaccination or infection histories. Conclusions and Relevance: This cohort study of immunized adults in Italy found that despite the mutations in the spike protein, the SARS-CoV-2 Omicron variant was recognized by the cellular component of the immune system. It is reasonable to assume that protection from hospitalization and severe disease will be maintained.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Glicoproteína da Espícula de Coronavírus/genética , Adulto Jovem
10.
Front Neurol ; 13: 748599, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280296

RESUMO

Relevance of blood-based biomarkers is increasing into the neurodegenerative diseases field, but data on Parkinson's disease (PD) remain still scarce. In this study, we used the SiMoA technique to measure serum content of total tau protein and amyloid-ß peptides (Aß-42, Aß-40) in 22 PD patients and ten control subjects. Serum levels of each biomarker were correlated with the respective CSF levels in both the groups; in PD patients, also the correlations between serum biomarkers and main clinical parameters were tested (motor, non-motor, cognitive scores and levodopa equivalent daily dose). Serum biomarkers did not exhibit quantitative differences between patients and controls; however, only PD patients had inter-fluids (serum-CSF) associations in tau and amyloid-ß-42 levels. Moreover, serum content of tau protein was inversely correlated with cognitive performances (MoCA score). These findings, albeit preliminary, indicate that brain-derived peptides may change in parallel in both peripheral blood and CSF of PD patients, eventually even in association with some clinical features. Further studies are now needed to validate the use of blood-based biomarkers in PD.

11.
Sci Immunol ; 6(66): eabl5344, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34726470

RESUMO

Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is effective in preventing hospitalization from severe COVID-19. However, multiple reports of breakthrough infections and of waning antibody titers have raised concerns on the durability of the vaccine, and current vaccination strategies now propose administration of a third dose. Here, we monitored T cell responses to the Spike protein of SARS-CoV-2 in 71 healthy donors vaccinated with two doses of the Pfizer-BioNTech mRNA vaccine (BNT162b2) for up to 6 months after vaccination. We found that vaccination induced the development of a sustained anti-viral CD4+ and CD8+ T cell response. These cells appeared before the development of high antibody titers, displayed markers of immunological maturity and stem cell memory, survived the physiological contraction of the immune response, and persisted for at least 6 months. Collectively, these data show that vaccination with BNT162b2 elicits an immunologically competent and long-lived SARS-CoV-2­specific T cell population.


Assuntos
Vacina BNT162/administração & dosagem , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Imunidade Celular/efeitos dos fármacos , Células T de Memória/imunologia , SARS-CoV-2/imunologia , Células-Tronco/imunologia , COVID-19/prevenção & controle , Feminino , Humanos , Masculino
12.
Front Immunol ; 12: 708820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249017

RESUMO

During the COVID19 pandemic, a range of vaccines displayed high efficacy in preventing disease, severe outcomes of infection, and mortality. However, the immunological correlates of protection, the duration of immune response, the transmission risk over time from vaccinated individuals are currently under active investigation. In this brief report, we describe the case of a vaccinated Healthcare Professional infected with a variant of Sars-CoV-2, who has been extensively investigated in order to draw a complete trajectory of infection. The patient has been monitored for the whole length of infection, assessing the temporal viral load decay, the quantification of viral RNA and subgenomic mRNA, antibodies (anti Sars-CoV-2, IgA, IgG, IgM) and cell-mediated (cytokine, B- and T-cell profiles) responses. Overall, this brief report highlights the efficacy of vaccine in preventing COVID19 disease, accelerating the recovery from infection, reducing the transmission risk, although the use of precautionary measures against Sars-CoV-2 spreading still remain critical.


Assuntos
Linfócitos B/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Pessoal de Saúde , SARS-CoV-2/fisiologia , Linfócitos T/imunologia , Adulto , Doenças Assintomáticas , Vacina BNT162 , COVID-19/diagnóstico , COVID-19/prevenção & controle , COVID-19/transmissão , Transmissão de Doença Infecciosa , Feminino , Humanos , Imunidade Humoral , Itália , RNA Viral/análise , Risco , Vacinação , Carga Viral
13.
Cancer Biol Med ; 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34018387

RESUMO

OBJECTIVE: Bone metastasis is a clinically important outcome of prostate carcinoma (PC). We focused on the phenotypic and functional characterization of a particularly aggressive phenotype within the androgen-independent bone metastasis-derived PC3 cell line. These cells, originated from the spontaneous conversion of a CD44-negative subpopulation, stably express the CD44v8-10 isoform (CD44v8-10pos) and display stem cell-like features and a marked invasive phenotype in vitro that is lost upon CD44v8-10 silencing. METHODS: Flow cytometry, enzyme-linked immunoassay, immunofluorescence, and Western blot were used for phenotypic and immunologic characterization. Real-time quantitative polymerase chain reaction and functional assays were used to assess osteomimicry. RESULTS: Analysis of epithelial-mesenchymal transition markers showed that CD44v8-10pos PC3 cells surprisingly display epithelial phenotype and can undergo osteomimicry, acquiring bone cell phenotypic and behavioral traits. Use of specific siRNA evidenced the ability of CD44v8-10 variant to confer osteomimetic features, hence the potential to form bone-specific metastasis. Moreover, the ability of tumors to activate immunosuppressive mechanisms which counteract effective immune responses is a sign of the aggressiveness of a tumor. Here we report that CD44v8-10pos cells express programmed death ligand 1, a negative regulator of anticancer immunity, and secrete exceptionally high amounts of interleukin-6, favoring osteoclastogenesis and immunosuppression in bone microenvironment. Notably, we identified a novel pathway activated by CD44v8-10, involving tafazzin (TAZ) and likely the Wnt/TAZ axis, known to play a role in upregulating osteomimetic genes. CONCLUSIONS: CD44v8-10 could represent a marker of a more aggressive bone metastatic PC population exerting a driver role in osteomimicry in bone. A novel link between TAZ and CD44v8-10 is also shown.

14.
Blood Cancer J ; 10(8): 85, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843624

RESUMO

Acute myeloid leukemia (AML) with FLT3-ITD mutations (FLT3-ITDmut) remains a therapeutic challenge, with a still high relapse rate, despite targeted treatment with tyrosine kinase inhibitors. In this disease, the CD34/CD123/CD25/CD99+ leukemic precursor cells (LPCs) phenotype predicts for FLT3-ITD-positivity. The aim of this study was to characterize the distribution of FLT3-ITD mutation in different progenitor cell subsets to shed light on the subclonal architecture of FLT3-ITDmut AML. Using high-speed cell sorting, we sequentially purified LPCs and CD34+ progenitors in samples from patients with FLT3-ITDmut AML (n = 12). A higher FLT3-ITDmut load was observed within CD34/CD123/CD25/CD99+ LPCs, as compared to CD34+ progenitors (CD123+/-,CD25-,CD99low/-) (p = 0.0005) and mononuclear cells (MNCs) (p < 0.0001). This was associated with significantly increased CD99 mean fluorescence intensity in LPCs. Significantly higher FLT3-ITDmut burden was also observed in LPCs of AML patients with a small FLT3-ITDmut clones at diagnosis. On the contrary, the mutation burden of other myeloid genes was similar in MNCs, highly purified LPCs and/or CD34+ progenitors. Treatment with an anti-CD99 mAb was cytotoxic on LPCs in two patients, whereas there was no effect on CD34+ cells from healthy donors. Our study shows that FLT3-ITD mutations occur early in LPCs, which represent the leukemic reservoir. CD99 may represent a new therapeutic target in FLT3-ITDmut AML.


Assuntos
Leucemia Mieloide Aguda/genética , Tirosina Quinase 3 Semelhante a fms/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Prognóstico , Inibidores de Proteínas Quinases/uso terapêutico , Adulto Jovem
15.
Artigo em Inglês | MEDLINE | ID: mdl-32817203

RESUMO

OBJECTIVE: Infection with Epstein-Barr virus (EBV) has been associated with clinical activity and risk of developing MS. The purpose of this study is to investigate the impact of glatiramer acetate (GA) therapy on EBV-specific immune responses and disease course. METHODS: We characterized EBV-specific CD8 T lymphocytes and B cells during disease-modifying treatments in 2 groups of patients with MS. We designed a 2-pronged approach consisting of a cross-sectional study (39 untreated patients, 38 patients who had undergone 12 months of GA treatment, and 48 healthy donors compatible for age and sex with the patients with MS) and a 12-month longitudinal study (35 patients treated with GA). CD8 EBV-specific T cells and B lymphocytes were studied using pentamers and multiparametric flow cytometry. RESULTS: We find that treatment with GA enhances viral recognition by inducing an increased number of circulating virus-specific CD8 T cells (p = 0.0043) and by relieving their features of exhaustion (p = 0.0053) and senescence (p < 0.0001, p = 0.0001). B cells, phenotypically and numerically tracked along the 1-year follow-up study, show a steady decrease in memory B-cell frequencies (p = 0.025), paralleled by an increase of the naive B subset. CONCLUSION: GA therapy acts as a disease-modifying therapy restoring homeostasis in the immune system, including anti-EBV responses.


Assuntos
Linfócitos B/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Acetato de Glatiramer/farmacologia , Herpesvirus Humano 4/imunologia , Fatores Imunológicos/farmacologia , Esclerose Múltipla Recidivante-Remitente/sangue , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Adulto , Idoso , Estudos Transversais , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Adulto Jovem
16.
Haematologica ; 105(8): 2056-2070, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31780628

RESUMO

Chronic inflammation is a key pathological hallmark of multiple sclerosis (MS) and suggests that resolution of inflammation, orchestrated by specialized pro-resolving lipid mediators (LM), is impaired. Here, through targeted-metabololipidomics in peripheral blood of patients with MS, we revealed that each disease form was associated with distinct LM profiles that significantly correlated with disease severity. In particular, relapsing and progressive MS patients were associated with high eicosanoids levels, whereas the majority of pro-resolving LM were significantly reduced or below limits of detection and correlated with disease progression. Furthermore, we found impaired expression of several pro-resolving LM biosynthetic enzymes and receptors in blood-derived leukocytes of MS patients. Mechanistically, differentially expressed mediators like LXA4, LXB4, RvD1 and PD1 reduced MS-derived monocyte activation and cytokine production, and inhibited inflammation-induced blood-brain barrier dysfunction and monocyte transendothelial migration. Altogether, these findings reveal peripheral defects in the resolution pathway in MS, suggesting pro-resolving LM as novel diagnostic biomarkers and potentially safe therapeutics.


Assuntos
Monócitos , Esclerose Múltipla , Barreira Hematoencefálica , Eicosanoides , Humanos , Inflamação , Mediadores da Inflamação , Esclerose Múltipla/tratamento farmacológico
17.
Front Immunol ; 10: 2947, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31956323

RESUMO

As the Nobel laureate Luigi Pirandello wrote in his novels, identities can be evanescent. Although a quarter of a century has passed since regulatory T cells (Treg) were first described, new studies continue to reveal surprising and contradictory features of this lymphocyte subset. Treg cells are the core of the immunological workforce engaged in the restraint of autoimmune or inflammatory reactions, and their characterization has revealed substantial heterogeneity and complexity in the phenotype and gene expression profiles, proving them to be a most versatile and adaptive cell type, as exemplified by their plasticity in fine-tuning immune responses. Defects in Treg function are associated with several autoimmune diseases, including multiple sclerosis, which is caused by an inappropriate immune reaction toward brain components; conversely, the beneficial effects of immunomodulating therapies on disease progression have been shown to partly act upon the biology of these cells. Both in animals and in humans the pool of circulating Treg cells is a mixture of natural (nTregs) and peripherally-induced Treg (pTregs). Particularly in humans, circulating Treg cells can be phenotypically subdivided into different subpopulations, which so far are not well-characterized, particularly in the context of autoimmunity. Recently, Treg cells have been rediscovered as mediators of tissue healing, and have also shown to be involved in organ homeostasis. Moreover, stability of the Treg lineage has recently been addressed by several conflicting reports, and immune-suppressive abilities of these cells have been shown to be dynamically regulated, particularly in inflammatory conditions, adding further levels of complexity to the study of this cell subset. Finally, Treg cells exert their suppressive function through different mechanisms, some of which-such as their ectoenzymatic activity-are particularly relevant in CNS autoimmunity. Here, we will review the phenotypically and functionally discernible Treg cell subpopulations in health and in multiple sclerosis, touching also upon the effects on this cell type of immunomodulatory drugs used for the treatment of this disease.


Assuntos
Doenças Autoimunes/imunologia , Autoimunidade , Doenças do Sistema Nervoso Central/imunologia , Neuroimunomodulação , Linfócitos T Reguladores/imunologia , Animais , Doenças Autoimunes/patologia , Doenças do Sistema Nervoso Central/patologia , Humanos , Linfócitos T Reguladores/patologia
18.
Cancers (Basel) ; 12(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905996

RESUMO

: NRF2 (NF-E2 p45-related factor 2) orchestrates cellular adaptive responses to stress. Its quantity and subcellular location is controlled through a complex network and its activity increases during redox perturbation, inflammation, growth factor stimulation, and energy fluxes. Even before all-trans retinoic acid (ATRA) treatment era it was a common experience that acute promyelocytic leukemia (APL) cells are highly sensitive to first line chemotherapy. Since we demonstrated how high doses of ascorbate (ASC) preferentially kill leukemic blast cells from APL patients, we aimed to define the underlying mechanism and found that promyelocytic leukemia/retinoic acid receptor α (PML/RARa) inhibits NRF2 function, impedes its transfer to the nucleus and enhances its degradation in the cytoplasm. Such loss of NRF2 function alters cell metabolism, demarcating APL tissue from both normal promyelocytes and other acute myeloide leukemia (AML) blast cells. Resistance to ATRA/arsenic trioxide (ATO) treatment is rare but grave and the metabolically-oriented treatment with high doses of ASC, which is highly effective on APL cells and harmless on normal hematopoietic stem cells (HSCs), could be of use in preventing clonal evolution and in rescuing APL-resistant patients.

19.
J Neuroimmunol ; 324: 165-171, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30270021

RESUMO

Several evidences emphasize B-cell pathogenic roles in multiple sclerosis (MS). We performed transcriptome analyses on peripheral B cells from therapy-free patients and age/sex-matched controls. Down-regulation of two transcripts (interferon response factor 1-IRF1, and C-X-C motif chemokine 10-CXCL10), belonging to the same pathway, was validated by RT-PCR in 26 patients and 21 controls. IRF1 and CXCL10 transcripts share potential seeding sequences for hsa-miR-424, that resulted up-regulated in MS patients. We confirmed this interaction and its functional effect by transfection experiments. Consistent findings indicate down-regulation of IRF1/CXCL10 axis, that may plausibly contribute to a pro-survival status of B cells in MS.


Assuntos
Linfócitos B/metabolismo , Perfilação da Expressão Gênica/métodos , Fator Regulador 1 de Interferon/biossíntese , Esclerose Múltipla/metabolismo , Transdução de Sinais/fisiologia , Transcriptoma/fisiologia , Adulto , Linhagem Celular Tumoral , Feminino , Humanos , Fator Regulador 1 de Interferon/genética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA