Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Neuroinflammation ; 20(1): 66, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36895046

RESUMO

BACKGROUND: Helicobacter pylori (Hp) infects the stomach of 50% of the world's population. Importantly, chronic infection by this bacterium correlates with the appearance of several extra-gastric pathologies, including neurodegenerative diseases. In such conditions, brain astrocytes become reactive and neurotoxic. However, it is still unclear whether this highly prevalent bacterium or the nanosized outer membrane vesicles (OMVs) they produce, can reach the brain, thus affecting neurons/astrocytes. Here, we evaluated the effects of Hp OMVs on astrocytes and neurons in vivo and in vitro. METHODS: Purified OMVs were characterized by mass spectrometry (MS/MS). Labeled OMVs were administered orally or injected into the mouse tail vein to study OMV-brain distribution. By immunofluorescence of tissue samples, we evaluated: GFAP (astrocytes), ßIII tubulin (neurons), and urease (OMVs). The in vitro effect of OMVs in astrocytes was assessed by monitoring NF-κB activation, expression of reactivity markers, cytokines in astrocyte-conditioned medium (ACM), and neuronal cell viability. RESULTS: Urease and GroEL were prominent proteins in OMVs. Urease (OMVs) was present in the mouse brain and its detection coincided with astrocyte reactivity and neuronal damage. In vitro, OMVs induced astrocyte reactivity by increasing the intermediate filament proteins GFAP and vimentin, the plasma membrane αVß3 integrin, and the hemichannel connexin 43. OMVs also produced neurotoxic factors and promoted the release of IFNγ in a manner dependent on the activation of the transcription factor NF-κB. Surface antigens on reactive astrocytes, as well as secreted factors in response to OMVs, were shown to inhibit neurite outgrowth and damage neurons. CONCLUSIONS: OMVs administered orally or injected into the mouse bloodstream reach the brain, altering astrocyte function and promoting neuronal damage in vivo. The effects of OMVs on astrocytes were confirmed in vitro and shown to be NF-κB-dependent. These findings suggest that Hp could trigger systemic effects by releasing nanosized vesicles that cross epithelial barriers and access the CNS, thus altering brain cells.


Assuntos
Helicobacter pylori , Camundongos , Animais , Helicobacter pylori/metabolismo , Astrócitos , Urease/metabolismo , Urease/farmacologia , NF-kappa B/metabolismo , Fator B do Complemento/metabolismo , Fator B do Complemento/farmacologia , Modelos Animais de Doenças , Espectrometria de Massas em Tandem , Neurônios
2.
Pharmaceutics ; 13(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34834381

RESUMO

Gold nanoparticles (AuNP) capped with biocompatible layers have functional optical, chemical, and biological properties as theranostic agents in biomedicine. The ferritin protein containing in situ synthesized AuNPs has been successfully used as an effective and completely biocompatible nanocarrier for AuNPs in human cell lines and animal experiments in vivo. Ferritin can be uptaken by different cell types through receptor-mediated endocytosis. Despite these advantages, few efforts have been made to evaluate the toxicity and cellular internalization of AuNP-containing ferritin nanocages. In this work, we study the potential of human heavy-chain (H) and light-chain (L) ferritin homopolymers as nanoreactors to synthesize AuNPs and their cytotoxicity and cellular uptake in different cell lines. The results show very low toxicity of ferritin-encapsulated AuNPs on different human cell lines and demonstrate that efficient cellular ferritin uptake depends on the specific H or L protein chains forming the ferritin protein cage and the presence or absence of metallic cargo. Cargo-devoid apoferritin is poorly internalized in all cell lines, and the highest ferritin uptake was achieved with AuNP-loaded H-ferritin homopolymers in transferrin-receptor-rich cell lines, showing more than seven times more uptake than apoferritin.

3.
Int J Mol Sci ; 22(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34445078

RESUMO

The Smoothened (SMO) receptor is the most druggable target in the Hedgehog (HH) pathway for anticancer compounds. However, SMO antagonists such as vismodegib rapidly develop drug resistance. In this study, new SMO antagonists having the versatile purine ring as a scaffold were designed, synthesised, and biologically tested to provide an insight to their mechanism of action. Compound 4s was the most active and the best inhibitor of cell growth and selectively cytotoxic to cancer cells. 4s induced cell cycle arrest, apoptosis, a reduction in colony formation and downregulation of PTCH and GLI1 expression. BODIPY-cyclopamine displacement assays confirmed 4s is a SMO antagonist. In vivo, 4s strongly inhibited tumour relapse and metastasis of melanoma cells in mice. In vitro, 4s was more efficient than vismodegib to induce apoptosis in human cancer cells and that might be attributed to its dual ability to function as a SMO antagonist and apoptosis inducer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Purinas/farmacologia , Receptor Smoothened/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HT29 , Proteínas Hedgehog/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Neoplasias/metabolismo , Purinas/química , Purinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Receptor Smoothened/metabolismo
4.
Biomater Res ; 24(1): 19, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33292808

RESUMO

BACKGROUND: Collagen, the most abundant protein in the animal kingdom, represents a promising biomaterial for regenerative medicine applications due to its structural diversity and self-assembling complexity. Despite collagen's widely known structural and functional features, the thermodynamics behind its fibrillogenic self-assembling process is still to be fully understood. In this work we report on a series of spectroscopic, mechanical, morphological and thermodynamic characterizations of high purity type I collagen (with a D-pattern of 65 nm) extracted from Wistar Hannover rat tail. Our herein reported results can be of help to elucidate differences in self-assembly states of proteins using ITC to improve the design of energy responsive and dynamic materials for applications in tissue engineering and regenerative medicine. METHODS: Herein we report the systematic study on the self-assembling fibrillogenesis mechanism of type I collagen, we provide morphological and thermodynamic evidence associated to different self-assembly events using ITC titrations. We provide thorough characterization of the effect of pH, effect of salts and protein conformation on self-assembled collagen samples via several complementary biophysical techniques, including circular dichroism (CD), Fourier Transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), atomic force microscopy (AFM), scanning electron microscopy (SEM), dynamic mechanical thermal analysis (DMTA) and thermogravimetric analysis (TGA). RESULTS: Emphasis was made on the use of isothermal titration calorimetry (ITC) for the thermodynamic monitoring of fibrillogenesis stages of the protein. An overall self-assembly enthalpy value of 3.27 ± 0.85 J/mol was found. Different stages of the self-assembly mechanism were identified, initial stages take place at pH values lower than the protein isoelectric point (pI), however, higher energy release events were recorded at collagen's pI. Denatured collagen employed as a control exhibited higher energy absorption at its pI, suggesting different energy exchange mechanisms as a consequence of different aggregation routes.

5.
Biochem Pharmacol ; 177: 113941, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32240650

RESUMO

In advanced stages of cancer disease, caveolin-1 (CAV1) expression increases and correlates with increased migratory and invasive capacity of the respective tumor cells. Previous findings from our laboratory revealed that specific ECM-integrin interactions and tyrosine-14 phosphorylation of CAV1 are required for CAV1-enhanced melanoma cell migration, invasion and metastasis in vivo. In this context, CAV1 phosphorylation on tyrosine-14 mediated by non-receptor Src-family tyrosine kinases seems to be important; however, the effect of Src-family kinase inhibitors on CAV1-enhanced metastasis in vivo has not been studied. Here, we evaluated the effect of CAV1 and c-Abl overexpression, as well as the use of the Src-family kinase inhibitors, PP2 and dasatinib (more specific for Src/Abl) in lung metastasis of B16F10 melanoma cells. Overexpression of CAV1 and c-Abl enhanced CAV1 phosphorylation and the metastatic potential of the B16F10 murine melanoma cells. Alternatively, treatment with PP2 or dasatinib for 2 h reduced CAV1 tyrosine-14 phosphorylation and levels recovered fully within 12 h of removing the inhibitors. Nonetheless, pre-treatment of cells with these inhibitors for 2 h sufficed to prevent migration, invasion and trans-endothelial migration in vitro. Importantly, the transient decrease in CAV1 phosphorylation by these kinase inhibitors prevented early steps of CAV1-enhanced lung metastasis by B16F10 melanoma cells injected into the tail vein of mice. In conclusion, this study underscores the relevance of CAV1 tyrosine-14 phosphorylation by Src-family kinases during the first steps of the metastatic sequence promoted by CAV1. These findings open up potential options for treatment of metastatic tumors in patients in which Src-family kinase activation and CAV1 overexpression favor dissemination of cancer cells to secondary sites.


Assuntos
Caveolina 1/metabolismo , Dasatinibe/farmacologia , Neoplasias Pulmonares/secundário , Melanoma Experimental/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Neoplasias Cutâneas/metabolismo , Quinases da Família src/antagonistas & inibidores , Animais , Caveolina 1/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dasatinibe/uso terapêutico , Feminino , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Masculino , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Neoplasias Cutâneas/patologia , Transfecção , Tirosina/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
6.
J Nanobiotechnology ; 18(1): 20, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31973696

RESUMO

BACKGROUND: Extracellular vesicles (EVs) have shown great potential for targeted therapy, as they have a natural ability to pass through biological barriers and, depending on their origin, can preferentially accumulate at defined sites, including tumors. Analyzing the potential of EVs to target specific cells remains challenging, considering the unspecific binding of lipophilic tracers to other proteins, the limitations of fluorescence for deep tissue imaging and the effect of external labeling strategies on their natural tropism. In this work, we determined the cell-type specific tropism of B16F10-EVs towards cancer cell and metastatic tumors by using fluorescence analysis and quantitative gold labeling measurements. Surface functionalization of plasmonic gold nanoparticles was used to promote indirect labeling of EVs without affecting size distribution, polydispersity, surface charge, protein markers, cell uptake or in vivo biodistribution. Double-labeled EVs with gold and fluorescent dyes were injected into animals developing metastatic lung nodules and analyzed by fluorescence/computer tomography imaging, quantitative neutron activation analysis and gold-enhanced optical microscopy. RESULTS: We determined that B16F10 cells preferentially take up their own EVs, when compared with colon adenocarcinoma, macrophage and kidney cell-derived EVs. In addition, we were able to detect the preferential accumulation of B16F10 EVs in small metastatic tumors located in lungs when compared with the rest of the organs, as well as their precise distribution between tumor vessels, alveolus and tumor nodules by histological analysis. Finally, we observed that tumor EVs can be used as effective vectors to increase gold nanoparticle delivery towards metastatic nodules. CONCLUSIONS: Our findings provide a valuable tool to study the distribution and interaction of EVs in mice and a novel strategy to improve the targeting of gold nanoparticles to cancer cells and metastatic nodules by using the natural properties of malignant EVs.


Assuntos
Antineoplásicos/química , Vesículas Extracelulares/química , Ouro/química , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/metabolismo , Melanoma/química , Nanopartículas Metálicas/química , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/terapia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/terapia , Corantes Fluorescentes/química , Humanos , Pulmão/metabolismo , Melanoma Experimental/diagnóstico por imagem , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Imagem Óptica , Propriedades de Superfície , Distribuição Tecidual
7.
Sci Rep ; 8(1): 17932, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30560894

RESUMO

Low effectiveness and resistance to treatments are commonplace in disorders of the central nervous system (CNS). These issues concern mainly the blood-brain barrier (BBB), which preserves homeostasis in the brain and protects this organ from toxic molecules and biohazards by regulating transport through it. BBB shuttles-short peptides able to cross the BBB-are being developed to help therapeutics to cross this barrier. BBB shuttles can be discovered by massive exploration of chemical diversity (e.g. computational means, phage display) or rational design (e.g. derivatives from a known peptide/protein able to cross). Here we present the selection of a peptide shuttle (HAI) from several candidates and the subsequent in-depth in vitro and in vivo study of this molecule. In order to explore the chemical diversity of HAI and enhance its biostability, and thereby its bioactivity, we explored two new protease-resistant versions of HAI (i.e. the retro-D-version, and a version that was N-methylated at the most sensitive sites to enzymatic cleavage). Our results show that, while both versions of HAI are resistant to proteases, the retro-D-approach preserved better transport properties.


Assuntos
Barreira Hematoencefálica/metabolismo , Peptídeos Penetradores de Células/síntese química , Peptídeos Penetradores de Células/farmacocinética , Receptores da Transferrina/análise , Animais , Peptídeos Penetradores de Células/química , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Estabilidade de Medicamentos , Humanos , Peptídeo Hidrolases/metabolismo , Permeabilidade , Ratos
8.
Nanoscale ; 10(47): 22612-22622, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30484463

RESUMO

Curcumin is widely considered beneficial to human health, but insolubility and instability greatly hamper reproducible exploitation of the advantageous traits. Here we report on the development, characterization and evaluation of a curcumin-loaded nanoemulsion (CUR-NEM) that is highly effective in preventing post-surgery tumor reincidence and metastasis. The method of fabrication utilized safe excipients and generated particles of 200 nm (PDI ≤ 0.2) with negative zeta potential (-30 mV) and a high yield of curcumin (95%), which can be converted by lyophilization to a dry powder. In vitro assays showed that CUR-NEM is safe in non-cancerous human cells (HEK-293T) and preferentially cytotoxic in gastric (AGS), colon (HT29-ATCC, HT29-US), breast (MDA-MB-231) and melanoma (B16F10) cells. In addition, in melanoma cells the nanoformulation increases intracellular curcumin accumulation and reactive oxygen species (ROS) formation, while preventing cell-migration and invasion. In vivo studies in C57BL/6 mice demonstrated that a single dose, applied topically to the wounded area after surgical excision of primary tumors formed upon subcutaneous injection of syngeneic B16F10 cells, was sufficient to completely prevent reincident tumor growth and spontaneous lung metastasis, while in untreated animals 70% reincidence and metastasis were observed. In vivo experiments also showed that the fluorescence signal due to curcumin was maintained at least 15 days after topical application of CUR-NEM, while when administered in DMSO the curcumin signal disappeared within 4 days. Importantly, the administration of a dose 22 times larger than that applied topically to animals after tumor surgery did not alter biochemical parameters. Due to the safety and efficacy of the formulation, we envisage it as ideal for topical application in cancer patients following surgery, to prevent tumor reincidence and metastasis. In addition, other routes of administration/protocols could also be proposed to treat/prevent malignant tumors in patients.


Assuntos
Curcumina/química , Emulsões/química , Neoplasias/patologia , Células A549 , Adenocarcinoma/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Portadores de Fármacos/química , Células HEK293 , Humanos , Neoplasias Pulmonares/patologia , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Metástase Neoplásica , Espécies Reativas de Oxigênio/metabolismo , Solventes/química
9.
Int J Nanomedicine ; 13: 6391-6412, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30410327

RESUMO

BACKGROUND: Numerous studies have proposed the use of fluorescent semiconductor nanoparticles or quantum dots (QDs) as novel tools to label cells and tumors. However, QD applications are limited by their toxicity in biological systems and little is known about whether QDs affect the capacity of cancer cells to metastasize. Previously, we described the "biomimetic" synthesis of CdTe-QDs (QDs-glutathione [GSH]) with increased biocompatibility and the potential utility in labeling cells. PURPOSE: In order to determine the feasibility of using QDs-GSH as a tool for tracking tumor cells during early metastasis, we characterized here for the first time, the in vitro and in vivo effects of the incorporation of green or red biomimetic QDs-GSH into B16F10 cells, a syngeneic mouse melanoma line for metastasis assays in C57BL/6 mice. METHODS: B16F10 cells were labeled with green or red biomimetic QDs-GSH in the presence or absence of n-acetylcysteine. Then, migration, invasion and proliferation of labeled B16F10 were evaluated in vitro. Finally, the B16F10 cells labeled with red QDs-GSH were used to monitor in vivo lung metastasis at early time points (5 minutes to 24 hours) or after 21 days in C57BL/6 mice. RESULTS: We developed a methodology that allows obtaining QDs-GSH-labeled B16F10 cells (nearly 100% viable labeled cells), which remained viable for at least 5 days and migrated similarly to control cells. However, proliferation, invasion, and the capacity to form metastatic nodules in the lungs were severely attenuated. Fluorescence imaging revealed that distribution/accumulation of QDs-GSH-labeled B16F10 cells could be tracked following injection into C57BL/6 mice (syngeneic preclinical metastasis model) and that these cells preferentially accumulated in the perialveolar area in lungs as early as 5 minutes post-injection. CONCLUSION: The methodology described here represents a useful alternative for monitoring initial events during tumor cell metastasis.


Assuntos
Materiais Biomiméticos/química , Diagnóstico por Imagem , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/secundário , Melanoma Experimental/patologia , Pontos Quânticos/química , Coloração e Rotulagem , Acetilcisteína/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glutationa/química , Humanos , Hidrodinâmica , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Eletricidade Estática , Distribuição Tecidual/efeitos dos fármacos
10.
Nanomaterials (Basel) ; 8(12)2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30486514

RESUMO

The inclusion compound (IC) of cyclodextrin (CD) containing the antitumor drug Methotrexate (MTX) as a guest molecule was obtained to increase the solubility of MTX and decrease its inherent toxic effects in nonspecific cells. The IC was conjugated with gold nanoparticles (AuNPs), obtained by a chemical method, creating a ternary intelligent delivery system for MTX molecules, based on the plasmonic properties of the AuNPs. Irradiation of the ternary system, with a laser wavelength tunable with the corresponding surface plasmon of AuNPs, causes local energy dissipation, producing the controlled release of the guest from CD cavities. Finally, cell viability was evaluated using MTS assays for ß-CD/MTX and AuNPs + ß-CD/MTX samples, with and without irradiation, against HeLa tumor cells. The irradiated sample of the ternary system AuNPs + ß-CD/MTX produced a diminution in cell viability attributed to the photothermal release of MTX.

11.
J Nanobiotechnology ; 16(1): 60, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30097010

RESUMO

BACKGROUND: Stable and non-toxic fluorescent markers are gaining attention in molecular diagnostics as powerful tools for enabling long and reliable biological studies. Such markers should not only have a long half-life under several assay conditions showing no photo bleaching or blinking but also, they must allow for their conjugation or functionalization as a crucial step for numerous applications such as cellular tracking, biomarker detection and drug delivery. RESULTS: We report the functionalization of stable fluorescent markers based on nanodiamonds (NDs) with a bifunctional peptide. This peptide is made of a cell penetrating peptide and a six amino acids long ß-sheet breaker peptide that is able to recognize amyloid ß (Aß) aggregates, a biomarker for the Alzheimer disease. Our results indicate that functionalized NDs (fNDs) are not cytotoxic and can be internalized by the cells. The fNDs allow ultrasensitive detection (at picomolar concentrations of NDs) of in vitro amyloid fibrils and amyloid aggregates in AD mice brains. CONCLUSIONS: The fluorescence of functionalized NDs is more stable than that of fluorescent markers commonly used to stain Aß aggregates such as Thioflavin T. These results pave the way for performing ultrasensitive and reliable detection of Aß aggregates involved in the pathogenesis of the Alzheimer disease.


Assuntos
Doença de Alzheimer/diagnóstico , Amiloide/análise , Corantes Fluorescentes/química , Nanodiamantes/química , Amiloide/metabolismo , Peptídeos beta-Amiloides/análise , Peptídeos beta-Amiloides/metabolismo , Animais , Benzotiazóis/química , Benzotiazóis/toxicidade , Biomarcadores/análise , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Corantes Fluorescentes/toxicidade , Humanos , Camundongos Transgênicos , Nanodiamantes/toxicidade , Agregados Proteicos
12.
Nanomedicine (Lond) ; 13(12): 1447-1462, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29972676

RESUMO

AIM: To track early events during lung metastasis, we labeled cells expressing (B16F10CAV1) or lacking CAV1 (B16F10mock) with gold nanoparticles conjugated to the peptide TAT (AuNPs-PEG-TAT). METHODS: B16F10 expressing or lacking CAV1 were labeled with AuNPs-PEG-TAT. The physicochemical properties and cytotoxicity of these nanoparticles, as well as their effects on migration and invasiveness of B16F10 cells in vitro were evaluated. Ex vivo lung distribution of the labeled cells after tail vein injection into C57BL/6 mice was examined. RESULTS: AuNPs-PEG-TAT did not affect B16F10 viability, migration and invasiveness. The metastatic and tumorigenic capability of the labeled B16F10 was also not modified in comparison to unlabeled B16F10 cells. CAV1 expression favored the retention of B16F10 cells in the lungs of mice 2 h post injection, suggesting CAV1 promoted adherence to endothelial cells and transendothelial migration. CONCLUSIONS: We developed a protocol to label B16F10 cells with AuNPs-PEG-TAT that permits subsequent tracking of cells in mice. CAV1 overexpression was found to increase retention and transendothelial migration of B16F10 cells in the lung.


Assuntos
Caveolina 1/genética , Rastreamento de Células , Melanoma Experimental/diagnóstico por imagem , Nanopartículas Metálicas/administração & dosagem , Animais , Caveolina 1/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Ouro/química , Humanos , Melanoma Experimental/genética , Melanoma Experimental/patologia , Nanopartículas Metálicas/química , Camundongos , Metástase Neoplásica
13.
Molecules ; 23(5)2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29783629

RESUMO

Here we report the incorporation of gold nanostructures (nanospheres or nanorods, functionalized with carboxylate-end PEG) and curcumin oil-in-water (O/W) nanoemulsions (CurNem) into alginate microgels using the dripping technique. While gold nanostructures are promising nanomaterials for photothermal therapy applications, CurNem possess important pharmacological activities as reported here. In this sense, we evaluated the effect of CurNem on cell viability of both cancerous and non-cancerous cell lines (AGS and HEK293T, respectively), demonstrating preferential toxicity in cancer cells and safety for the non-cancerous cells. After incorporating gold nanostructures and CurNem together into the microgels, microstructures with diameters of 220 and 540 µm were obtained. When stimulating microgels with a laser, the plasmon effect promoted a significant rise in the temperature of the medium; the temperature increase was higher for those containing gold nanorods (11⁻12 °C) than nanospheres (1⁻2 °C). Interestingly, the incorporation of both nanosystems in the microgels maintains the photothermal properties of the gold nanostructures unmodified and retains with high efficiency the curcumin nanocarriers. We conclude that these results will be of interest to design hydrogel formulations with therapeutic applications.


Assuntos
Portadores de Fármacos/química , Ouro/química , Nanosferas/química , Nanotubos/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Curcumina/administração & dosagem , Curcumina/química , Liberação Controlada de Fármacos , Emulsões , Géis , Células HEK293 , Humanos , Lasers , Tamanho da Partícula , Fotoquimioterapia/métodos , Polietilenoglicóis/química , Solubilidade , Propriedades de Superfície
14.
Front Microbiol ; 7: 1740, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877158

RESUMO

With its capacity for anaerobic methane oxidation and denitrification, the bacterium Methylomirabilis oxyfera plays an important role in natural ecosystems. Its unique physiology can be exploited for more sustainable wastewater treatment technologies. However, operational stability of full-scale bioreactors can experience setbacks due to, for example, bacteriophage blooms. By shaping microbial communities through mortality, horizontal gene transfer, and metabolic reprogramming, bacteriophages are important players in most ecosystems. Here, we analyzed an infected Methylomirabilis sp. bioreactor enrichment culture using (advanced) electron microscopy, viral metagenomics and bioinformatics. Electron micrographs revealed four different viral morphotypes, one of which was observed to infect Methylomirabilis cells. The infected cells contained densely packed ~55 nm icosahedral bacteriophage particles with a putative internal membrane. Various stages of virion assembly were observed. Moreover, during the bacteriophage replication, the host cytoplasmic membrane appeared extremely patchy, which suggests that the bacteriophages may use host bacterial lipids to build their own putative internal membrane. The viral metagenome contained 1.87 million base pairs of assembled viral sequences, from which five putative complete viral genomes were assembled and manually annotated. Using bioinformatics analyses, we could not identify which viral genome belonged to the Methylomirabilis- infecting bacteriophage, in part because the obtained viral genome sequences were novel and unique to this reactor system. Taken together these results show that new bacteriophages can be detected in anaerobic cultivation systems and that the effect of bacteriophages on the microbial community in these systems is a topic for further study.

15.
Int J Nanomedicine ; 10: 4919-36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26300639

RESUMO

An exciting and emerging field in nanomedicine involves the use of gold nanoparticles (AuNPs) in the preclinical development of new strategies for the treatment and diagnosis of brain-related diseases such as neurodegeneration and cerebral tumors. The treatment of many brain-related disorders with AuNPs, which possess useful physical properties, is limited by the blood-brain barrier (BBB). The BBB highly regulates the substances that can permeate into the brain. Peptides and proteins may represent promising tools to improve the delivery of AuNPs to the central nervous system (CNS). In this review, we summarize the potential applications of AuNPs to CNS disorders, discuss different strategies based on the use of peptides or proteins to improve the delivery of AuNPs to the brain, and examine the intranasal administration route, which bypasses the BBB. We also analyze the potential neurotoxicity of AuNPs and the perspectives and new challenges concerning the use of peptides and proteins to enhance the delivery of AuNPs to the brain. The majority of the work described in this review is in a preclinical stage of experimentation, or in select cases, in clinical trials in humans. We note that the use of AuNPs still requires substantial study before being translated into human applications. However, for further clinical research, the issues related to the potential use of AuNPs must be analyzed.


Assuntos
Encéfalo/metabolismo , Portadores de Fármacos , Ouro , Nanopartículas Metálicas , Nanomedicina/métodos , Peptídeos , Encefalopatias , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/uso terapêutico , Portadores de Fármacos/toxicidade , Ouro/química , Ouro/farmacocinética , Ouro/uso terapêutico , Ouro/toxicidade , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/toxicidade , Peptídeos/química , Peptídeos/farmacocinética , Peptídeos/uso terapêutico , Peptídeos/toxicidade , Proteínas/química , Proteínas/farmacocinética , Proteínas/uso terapêutico , Proteínas/toxicidade
16.
Curr Top Med Chem ; 14(5): 676-89, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24444159

RESUMO

In this article we review the flow chemistry methodologies for the controlled synthesis of different kind of nano and microparticles for biomedical applications. Injection mechanism has emerged as new alternative for the synthesis of nanoparticles due to this strategy allows achieving superior levels of control of self-assemblies, leading to higher-ordered structures and rapid chemical reactions. Self-assembly events are strongly dependent on factors such as the local concentration of reagents, the mixing rates, and the shear forces, which can be finely tuned, as an example, in a microfluidic device. Injection methods have also proved to be optimal to elaborate microsystems comprising polymer solutions. Concretely, extrusion based methods can provide controlled fluid transport, rapid chemical reactions, and cost-saving advantages over conventional reactors. We provide an update of synthesis of nano and microparticles such as core/shell, Janus, nanocrystals, liposomes, and biopolymeric microgels through flow chemistry, its potential bioapplications and future challenges in this field are discussed.


Assuntos
Pesquisa Biomédica/métodos , Microesferas , Nanopartículas/química , Pesquisa Biomédica/instrumentação
17.
ACS Appl Mater Interfaces ; 5(10): 4076-85, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23597259

RESUMO

Gold nanorods used in therapy and diagnosis must be nontoxic and stable in biological media and should be specific for the target. The complete combination of these three factors has hindered the use of gold nanorods as carriers in biological and biomedical applications. In this study, we produced a conjugate of gold nanorods with the peptide CLPFFD that recognizes toxic ß-amyloid aggregates present in Alzheimer's disease, demonstrates colloidal stability, maintains plasmonic properties, and shows no effects on cell viability in the SH-SY5Y cell line. Furthermore, the irradiation of ß-amyloid in the presence of the conjugate with near-infrared region irradiation energy reduces the amyloidogenic process reducing also its cytotoxicity. The nanorods were synthesized following the seed-mediated method in cetyltrimethylammonium bromide (CTAB) and were conjugated with the N-terminal cysteine peptide, CLPFFD. The conjugate was exhaustively characterized using different techniques (Absorption spectroscopy, X-ray photoelectron spectroscopy, electron energy loss spectroscopy, and zeta potential). The effects on cell viability and cell penetration by transmission electron microscopy of the conjugate were evaluated. The chemisorption of the peptide on the surface of gold nanorods increases their stability and reduces their effects on cell viability.


Assuntos
Ouro/química , Nanotubos , Peptídeos/química , Sobrevivência Celular , Microscopia Eletrônica de Transmissão e Varredura , Espectroscopia Fotoeletrônica , Espectroscopia de Luz Próxima ao Infravermelho
18.
Biomaterials ; 33(29): 7194-205, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22795856

RESUMO

The treatment of Alzheimer's disease and many other brain-related disorders is limited because of the presence of the blood-brain barrier, which highly regulate the crossing of drugs. Metal nanoparticles have unique features that could contribute to the development of new therapies for these diseases. Nanoparticles have the capacity to carry several molecules of a drug; furthermore, their unique physico-chemical properties allow, for example, photothermal therapy to produce molecular surgery to destroy tumor cells and toxic structures. Recently, we demonstrated that gold nanoparticles conjugated to the peptide CLPFFD are useful to destroy the toxic aggregates of ß-amyloid, similar to the ones found in the brains of patients with Alzheimer's disease. However, nanoparticles, like many other compounds, have null or very low capacity to cross the blood-brain barrier. In order to devise a strategy to improve drug delivery to the brain, here we introduced the peptide sequence THRPPMWSPVWP into the gold nanoparticle-CLPFFD conjugate. This peptide sequence interacts with the transferrin receptor present in the microvascular endothelial cells of the blood-brain barrier, thus causing an increase in the permeability of the conjugate in brain, as shown by experiments in vitro and in vivo. Our results are highly relevant for the therapeutic applications of gold nanoparticles for molecular surgery in the treatment of neurodegenerative diseases such as Alzheimer's disease.


Assuntos
Encéfalo/efeitos dos fármacos , Ouro/química , Nanopartículas Metálicas/química , Peptídeos/química , Receptores da Transferrina/química , Doença de Alzheimer/metabolismo , Animais , Barreira Hematoencefálica , Bovinos , Técnicas de Cocultura , Colorimetria/métodos , Células Endoteliais/citologia , Humanos , Masculino , Microcirculação , Nanotecnologia/métodos , Permeabilidade , Ratos , Ratos Sprague-Dawley , Soro/metabolismo
19.
Bioconjug Chem ; 23(3): 399-408, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22284226

RESUMO

Gold nanoparticles (AuNPs) have been extensively used in biological applications because of their biocompatibility, size, and ease of characterization, as well as an extensive knowledge of their surface chemistry. These features make AuNPs readily exploitable for biomedical applications, including drug delivery and novel diagnostic and therapeutic approaches. In a previous work, we studied ex vivo distribution of the conjugate C(AuNP)-LPFFD for its potential uses in the treatment of Alzheimer's disease. In this study, we covalently labeled the conjugate with [(18)F]-fluorobenzoate to study the in vivo distribution of the AuNP by positron emission tomography (PET). After intravenous administration in rat, the highest concentration of the radiolabeled conjugate was found in the bladder and urine with a lower proportion in the intestine, demonstrating progressive accumulation compatible with biliary excretion of the conjugate. The conjugate also accumulated in the liver and spleen. PET imaging allowed us to study the in vivo biodistribution of the AuNPs in a noninvasive and sensitive way using a reduced number of animals. Our results show that AuNPs can be covalently and radioactively labeled for PET biodistribution studies.


Assuntos
Radioisótopos de Flúor/farmacocinética , Ouro/química , Nanopartículas Metálicas , Peptídeos/farmacocinética , Animais , Cromatografia Líquida de Alta Pressão , Avaliação Pré-Clínica de Medicamentos , Masculino , Microscopia Eletrônica de Transmissão , Peptídeos/química , Tomografia por Emissão de Pósitrons , Ratos , Ratos Sprague-Dawley , Espectrofotometria Ultravioleta , Ressonância de Plasmônio de Superfície , Distribuição Tecidual
20.
Nanomedicine (Lond) ; 5(6): 897-913, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20735225

RESUMO

BACKGROUND & AIMS: Gold nanoparticles (GNPs) have promising applications for drug delivery as well as for the diagnosis and treatment of several pathologies, such as those related to the CNS. However, GNPs are retained in a number of organs, such as the liver and spleen. Owing to their negative charge and/or processes of opsonization, GNPs are retained by the reticuloendothelial system, thereby decreasing their delivery to the brain. It is therefore crucial to modify the nanoparticle surface in order to increase its lipophilicity and reduce its negative charge, thus achieving enhanced delivery to the brain. RESULTS: In this article, we have shown that conjugation of 12 nm GNPs with the amphipathic peptide CLPFFD increases the in vivo penetration of these particles to the rat brain. The C(GNP)-LPFFD conjugates showed a smaller negative charge and a greater hydrophobic character than citrate-capped GNPs of the same size. We administered intraperitoneal injections of citrate GNPs and C(GNP)-LPFFD in rats, and determined the gold content in the tissues by neutron activation. Compared with citrate GNPs, the C(GNP)-LPFFD conjugate improved the delivery to the brain, increasing the concentration of gold by fourfold, while simultaneously reducing its retention by the spleen 1 and 2 h after injection. At 24 h, the conjugate was partially cleared from the brain, and mainly accumulated in the liver. The C(GNP)-LPFFD did not alter the integrity of the blood-brain barrier, and had no effect on cell viability.


Assuntos
Encéfalo/metabolismo , Ouro , Nanopartículas Metálicas , Peptídeos/química , Animais , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA