Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Development ; 150(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37902109

RESUMO

Multinucleated cells, or syncytia, are found in diverse taxa. Their biological function is often associated with the compartmentalization of biochemical or cellular activities within the syncytium. How such compartments are generated and maintained is poorly understood. The sea urchin embryonic skeleton is secreted by a syncytium, and local patterns of skeletal growth are associated with distinct sub-domains of gene expression within the syncytium. For such molecular compartments to be maintained and to control local patterns of skeletal growth: (1) the mobility of TFs must be restricted to produce stable differences in the transcriptional states of nuclei within the syncytium; and (2) the mobility of biomineralization proteins must also be restricted to produce regional differences in skeletal growth. To test these predictions, we expressed fluorescently tagged forms of transcription factors and biomineralization proteins in sub-domains of the skeletogenic syncytium. We found that both classes of proteins have restricted mobility within the syncytium and identified motifs that limit their mobility. Our findings have general implications for understanding the functional and molecular compartmentalization of syncytia.


Assuntos
Ouriços-do-Mar , Fatores de Transcrição , Animais , Fatores de Transcrição/metabolismo , Células Gigantes/metabolismo , Mesoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
2.
JCI Insight ; 8(10)2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37212279

RESUMO

In eutherians, the placenta plays a critical role in the uptake, storage, and metabolism of lipids. These processes govern the availability of fatty acids to the developing fetus, where inadequate supply has been associated with substandard fetal growth. Whereas lipid droplets are essential for the storage of neutral lipids in the placenta and many other tissues, the processes that regulate placental lipid droplet lipolysis remain largely unknown. To assess the role of triglyceride lipases and their cofactors in determining placental lipid droplet and lipid accumulation, we assessed the role of patatin like phospholipase domain containing 2 (PNPLA2) and comparative gene identification-58 (CGI58) in lipid droplet dynamics in the human and mouse placenta. While both proteins are expressed in the placenta, the absence of CGI58, not PNPLA2, markedly increased placental lipid and lipid droplet accumulation. These changes were reversed upon restoration of CGI58 levels selectively in the CGI58-deficient mouse placenta. Using co-immunoprecipitation, we found that, in addition to PNPLA2, PNPLA9 interacts with CGI58. PNPLA9 was dispensable for lipolysis in the mouse placenta yet contributed to lipolysis in human placental trophoblasts. Our findings establish a crucial role for CGI58 in placental lipid droplet dynamics and, by extension, in nutrient supply to the developing fetus.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase , Aciltransferases , Lipase , Lipólise , Placenta , Lipase/metabolismo , Humanos , Animais , Camundongos , Placenta/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Aciltransferases/metabolismo , Trofoblastos , Feminino , Gotículas Lipídicas
3.
Curr Top Dev Biol ; 146: 113-148, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35152981

RESUMO

The skeleton-forming cells of sea urchins and other echinoderms have been studied by developmental biologists as models of cell specification and morphogenesis for many decades. The gene regulatory network (GRN) deployed in the embryonic skeletogenic cells of euechinoid sea urchins is one of the best understood in any developing animal. Recent comparative studies have leveraged the information contained in this GRN, bringing renewed attention to the diverse patterns of skeletogenesis within the phylum and the evolutionary basis for this diversity. The homeodomain-containing transcription factor, Alx1, was originally shown to be a core component of the skeletogenic GRN of the sea urchin embryo. Alx1 has since been found to be key regulator of skeletal cell identity throughout the phylum. As such, Alx1 is currently serving as a lens through which multiple developmental processes are being investigated. These include not only GRN organization and evolution, but also cell reprogramming, cell type evolution, and the gene regulatory control of morphogenesis. This review summarizes our current state of knowledge concerning Alx1 and highlights the insights it is yielding into these important developmental and evolutionary processes.


Assuntos
Reprogramação Celular , Redes Reguladoras de Genes , Animais , Reprogramação Celular/genética , Equinodermos , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese/genética , Ouriços-do-Mar/genética
4.
Genome Res ; 31(9): 1680-1692, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34330790

RESUMO

We used capped analysis of gene expression with sequencing (CAGE-seq) to profile eRNA expression and enhancer activity during embryogenesis of a model echinoderm: the sea urchin, Strongylocentrotus purpuratus We identified more than 18,000 enhancers that were active in mature oocytes and developing embryos and documented a burst of enhancer activation during cleavage and early blastula stages. We found that a large fraction (73.8%) of all enhancers active during the first 48 h of embryogenesis were hyperaccessible no later than the 128-cell stage and possibly even earlier. Most enhancers were located near gene bodies, and temporal patterns of eRNA expression tended to parallel those of nearby genes. Furthermore, enhancers near lineage-specific genes contained signatures of inputs from developmental gene regulatory networks deployed in those lineages. A large fraction (60%) of sea urchin enhancers previously shown to be active in transgenic reporter assays was associated with eRNA expression. Moreover, a large fraction (50%) of a representative subset of enhancers identified by eRNA profiling drove tissue-specific gene expression in isolation when tested by reporter assays. Our findings provide an atlas of developmental enhancers in a model sea urchin and support the utility of eRNA profiling as a tool for enhancer discovery and regulatory biology. The data generated in this study are available at Echinobase, the public database of information related to echinoderm genomics.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Ouriços-do-Mar , Animais , Desenvolvimento Embrionário/genética , Elementos Facilitadores Genéticos , Redes Reguladoras de Genes , Ouriços-do-Mar/genética
5.
J Biol Chem ; 297(1): 100901, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34157281

RESUMO

Alx1, a homeodomain-containing transcription factor, is a highly conserved regulator of skeletogenesis in echinoderms. In sea urchins, Alx1 plays a central role in the differentiation of embryonic primary mesenchyme cells (PMCs) and positively regulates the transcription of most biomineralization genes expressed by these cells. The alx1 gene arose via duplication and acquired a skeletogenic function distinct from its paralog (alx4) through the exonization of a 41-amino acid motif (the D2 domain). Alx1 and Alx4 contain glutamine-50 paired-type homeodomains, which interact preferentially with palindromic binding sites in vitro. Chromatin immunoprecipitation sequencing (ChIP-seq) studies have shown, however, that Alx1 binds both to palindromic and half sites in vivo. To address this apparent discrepancy and explore the function of the D2 domain, we used an endogenous cis-regulatory module associated with Sp-mtmmpb, a gene that encodes a PMC-specific metalloprotease, to analyze the DNA-binding properties of Alx1. We find that Alx1 forms dimeric complexes on TAAT-containing half sites by a mechanism distinct from the well-known mechanism of dimerization on palindromic sites. We used transgenic reporter assays to analyze the functional roles of half sites in vivo and demonstrate that two sites with partially redundant functions are essential for the PMC-specific activity of the Sp-mtmmpb cis-regulatory module. Finally, we show that the D2 domain influences the DNA-binding properties of Alx1 in vitro, suggesting that the exonization of this motif may have facilitated the acquisition of new transcriptional targets and consequently a novel developmental function.


Assuntos
Biomineralização , Equinodermos/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Sequência Conservada , DNA/metabolismo , Equinodermos/metabolismo , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Ligação Proteica , Multimerização Proteica , Fatores de Transcrição/química , Fatores de Transcrição/genética
6.
Proc Natl Acad Sci U S A ; 117(44): 27319-27328, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33087576

RESUMO

The recently identified ferroptotic cell death is characterized by excessive accumulation of hydroperoxy-arachidonoyl (C20:4)- or adrenoyl (C22:4)- phosphatidylethanolamine (Hp-PE). The selenium-dependent glutathione peroxidase 4 (GPX4) inhibits ferroptosis, converting unstable ferroptotic lipid hydroperoxides to nontoxic lipid alcohols in a tissue-specific manner. While placental oxidative stress and lipotoxicity are hallmarks of placental dysfunction, the possible role of ferroptosis in placental dysfunction is largely unknown. We found that spontaneous preterm birth is associated with ferroptosis and that inhibition of GPX4 causes ferroptotic injury in primary human trophoblasts and during mouse pregnancy. Importantly, we uncovered a role for the phospholipase PLA2G6 (PNPLA9, iPLA2beta), known to metabolize Hp-PE to lyso-PE and oxidized fatty acid, in mitigating ferroptosis induced by GPX4 inhibition in vitro or by hypoxia/reoxygenation injury in vivo. Together, we identified ferroptosis signaling in the human and mouse placenta, established a role for PLA2G6 in attenuating trophoblastic ferroptosis, and provided mechanistic insights into the ill-defined placental lipotoxicity that may inspire PLA2G6-targeted therapeutic strategies.


Assuntos
Ferroptose/fisiologia , Fosfolipases A2 do Grupo VI/metabolismo , Trofoblastos/metabolismo , Animais , Feminino , Glutationa Peroxidase/metabolismo , Fosfolipases A2 do Grupo VI/genética , Fosfolipases A2 do Grupo VI/fisiologia , Humanos , Ferro/metabolismo , Peróxidos Lipídicos/metabolismo , Camundongos , Camundongos Knockout , Fosfatidiletanolaminas/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Placenta/metabolismo , Gravidez , Nascimento Prematuro/metabolismo , Transdução de Sinais
7.
Development ; 146(16)2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31331943

RESUMO

Alx1 is a conserved regulator of skeletogenesis in echinoderms and evolutionary changes in Alx1 sequence and expression have played a pivotal role in modifying programs of skeletogenesis within the phylum. Alx1 regulates a large suite of effector genes that control the morphogenetic behaviors and biomineral-forming activities of skeletogenic cells. To better understand the gene regulatory control of skeletogenesis by Alx1, we used genome-wide ChIP-seq to identify Alx1-binding sites and direct gene targets. Our analysis revealed that many terminal differentiation genes receive direct transcriptional inputs from Alx1. In addition, we found that intermediate transcription factors previously shown to be downstream of Alx1 all receive direct inputs from Alx1. Thus, Alx1 appears to regulate effector genes by indirect, as well as direct, mechanisms. We tested 23 high-confidence ChIP-seq peaks using GFP reporters and identified 18 active cis-regulatory modules (CRMs); this represents a high success rate for CRM discovery. Detailed analysis of a representative CRM confirmed that a conserved, palindromic Alx1-binding site was essential for expression. Our work significantly advances our understanding of the gene regulatory circuitry that controls skeletogenesis in sea urchins and provides a framework for evolutionary studies.


Assuntos
Proteínas de Homeodomínio/metabolismo , Ouriços-do-Mar/genética , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Evolução Biológica , Sequenciamento de Cromatina por Imunoprecipitação , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Morfogênese/genética , Mutagênese , Ouriços-do-Mar/embriologia , Esqueleto/embriologia , Fatores de Transcrição/genética
8.
Protein Expr Purif ; 87(2): 111-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23137940

RESUMO

Expression of recombinant proteins in bacterial or eukaryotic systems often results in aggregation rendering them unavailable for biochemical or structural studies. Protein aggregation is a costly problem for biomedical research. It forces research laboratories and the biomedical industry to search for alternative, more soluble, non-human proteins and limits the number of potential "druggable" targets. In this study we present a highly reproducible protocol that introduces the systematic use of an extensive number of detergents to solubilize aggregated proteins expressed in bacterial and eukaryotic systems. We validate the usefulness of this protocol by solubilizing traditionally difficult human protein targets to milligram quantities and confirm their biological activity. We use this method to solubilize monomeric or multimeric components of multi-protein complexes and demonstrate its efficacy to reconstitute large cellular machines. This protocol works equally well on cytosolic, nuclear and membrane proteins and can be easily adapted to a high throughput format.


Assuntos
Biotecnologia/métodos , Detergentes/química , Proteínas de Membrana/isolamento & purificação , Complexos Multiproteicos/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Escherichia coli , Proteínas de Membrana/química , Complexos Multiproteicos/química , Proteínas Recombinantes/química , Saccharomyces cerevisiae , Células Sf9 , Solubilidade
9.
Methods Mol Biol ; 682: 149-61, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21057927

RESUMO

This chapter describes a technique in which indirect immunofluorescence is applied to visualize the process of nucleotide excision repair (NER) at the site of locally induced damage in DNA. UV-irradiation of cells through an isopore polycarbonate membrane filter generates cyclobutane pyrimidine dimers (CPD) and (6-4) photoproducts (6-4PP) on a subnuclear area, which corresponds to the size of a pore on the membrane. Specific antibodies to CPD and 6-4PP define the damaged spot. The NER components co-localize at the damaged-DNA subnuclear spot, where the proteins are stained with the appropriate fluorescent antibodies. This relatively simple and affordable method facilitates the examination of the sequential assembly of NER proteins in the chromatin-embedded DNA photoproducts. The method also enhances the identification of repair auxiliary proteins and complexes, such as ubiquitin E3 ligases, involved in the initiation of NER on non-transcribed DNA.


Assuntos
Dano ao DNA , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA/efeitos da radiação , Raios Ultravioleta , Soluções Tampão , Células Cultivadas , Detergentes , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Humanos , Transporte Proteico/efeitos da radiação
10.
J Biol Chem ; 285(48): 37333-41, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-20870715

RESUMO

The human immunodeficiency virus type 1 (HIV-1) accessory protein, Vpr, interacts with several host cellular proteins including uracil DNA glycosylase-2 (UNG2) and a cullin-RING E3 ubiquitin ligase assembly (CRL4(DCAF1)). The ligase is composed of cullin 4A (CUL4A), RING H2 finger protein (RBX1), DNA damage-binding protein 1 (DDB1), and a substrate recognition subunit, DDB1- and CUL4-associated factor 1 (DCAF1). Here we show that recombinant UNG2 specifically interacts with Vpr, but not with Vpx of simian immunodeficiency virus, forming a heterotrimeric complex with DCAF1 and Vpr in vitro as well as in vivo. Using reconstituted CRL4(DCAF1) and CRL4(DCAF1-Vpr) E3 ubiquitin ligases in vitro reveals that UNG2 ubiquitination (ubiquitylation) is facilitated by Vpr. Co-expression of DCAF1 and Vpr causes down-regulation of UNG2 in a proteasome-dependent manner, with Vpr mutants that are defective in UNG2 or DCAF1 binding abrogating this effect. Taken together, our results show that the CRL4(DCAF1) E3 ubiquitin ligase can be subverted by Vpr to target UNG2 for degradation.


Assuntos
Proteínas de Transporte/metabolismo , DNA Glicosilases/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Proteínas de Transporte/genética , Proteínas Culina/genética , Proteínas Culina/metabolismo , DNA Glicosilases/genética , Células HEK293 , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
11.
Cancer Res ; 68(13): 5014-22, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18593899

RESUMO

By removing UV-induced lesions from DNA, the nucleotide excision repair (NER) pathway preserves the integrity of the genome. The UV-damaged DNA-binding (UV-DDB) protein complex is involved in the recognition of chromatin-embedded UV-damaged DNA, which is the least understood step of NER. UV-DDB consists of DDB1 and DDB2, and it is a component of the cullin 4A (CUL4A)-based ubiquitin ligase, DDB1-CUL4A(DDB2). We previously showed that DDB1-CUL4A(DDB2) ubiquitinates histone H2A at the sites of UV lesions in a DDB2-dependent manner. Mutations in DDB2 cause a cancer prone syndrome, xeroderma pigmentosum group E (XP-E). CUL4A and its paralog, cullin 4B (CUL4B), copurify with the UV-DDB complex, but it is unclear whether CUL4B has a role in NER as a separate E3 ubiquitin ligase. Here, we present evidence that CUL4A and CUL4B form two individual E3 ligases, DDB1-CUL4A(DDB2) and DDB1-CUL4B(DDB2). To investigate CUL4B's possible role in NER, we examined its subcellular localization in unirradiated and irradiated cells. CUL4B colocalizes with DDB2 at UV-damaged DNA sites. Furthermore, CUL4B binds to UV-damaged chromatin as a part of the DDB1-CUL4B(DDB2) E3 ligase in the presence of functional DDB2. In contrast to CUL4A, CUL4B is localized in the nucleus and facilitates the transfer of DDB1 into the nucleus independently of DDB2. Importantly, DDB1-CUL4B(DDB2) is more efficient than DDB1-CUL4A(DDB2) in monoubiquitinating histone H2A in vitro. Overall, this study suggests that DDB1-CUL4B(DDB2) E3 ligase may have a distinctive function in modifying the chromatin structure at the site of UV lesions to promote efficient NER.


Assuntos
Cromatina/metabolismo , Proteínas Culina/metabolismo , Dano ao DNA , Histonas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Raios Ultravioleta , Núcleo Celular/metabolismo , Células Cultivadas , Cromatina/efeitos da radiação , Proteínas Culina/genética , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Ligação Proteica , Transporte Proteico/efeitos da radiação , Distribuição Tecidual , Transfecção , Ubiquitinação/efeitos da radiação , Raios Ultravioleta/efeitos adversos
12.
Proc Natl Acad Sci U S A ; 103(8): 2588-93, 2006 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-16473935

RESUMO

Xeroderma pigmentosum (XP) is a heritable human disorder characterized by defects in nucleotide excision repair (NER) and the development of skin cancer. Cells from XP group E (XP-E) patients have a defect in the UV-damaged DNA-binding protein complex (UV-DDB), involved in the damage recognition step of NER. UV-DDB comprises two subunits, products of the DDB1 and DDB2 genes, respectively. Mutations in the DDB2 gene account for the underlying defect in XP-E. The UV-DDB complex is a component of the newly identified cullin 4A-based ubiquitin E3 ligase, DDB1-CUL4A(DDB2). The E3 ubiquitin ligases recognize specific substrates and mediate their ubiquitination to regulate protein activity or target proteins for degradation by the proteasomal pathway. In this study, we have addressed the role of the UV-DDB-based E3 in NER and sought a physiological substrate. We demonstrate that monoubiquitinated histone H2A in native chromatin coimmunoprecipitates with the endogenous DDB1-CUL4A(DDB2) complex in response to UV irradiation. Further, mutations in DDB2 alter the formation and binding activity of the DDB1-CUL4A(DDB2) ligase, accompanied by impaired monoubiquitination of H2A after UV treatment of XP-E cells, compared with repair-proficient cells. This finding indicates that DDB2, as the substrate receptor of the DDB1-CUL4A-based ligase, specifically targets histone H2A for monoubiquitination in a photolesion-binding-dependent manner. Given that the loss of monoubiquitinated histone H2A at the sites of UV-damaged DNA is associated with decreased global genome repair in XP-E cells, this study suggests that histone modification, mediated by the XPE factor, facilitates the initiation of NER.


Assuntos
Proteínas Culina/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Xeroderma Pigmentoso/enzimologia , Cromatina/metabolismo , Proteínas Culina/análise , DNA/química , DNA/efeitos da radiação , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/genética , Histonas/análise , Humanos , Mutação , Células Tumorais Cultivadas , Ubiquitina , Ubiquitina-Proteína Ligases/análise , Raios Ultravioleta , Xeroderma Pigmentoso/genética
13.
J Cell Biochem ; 92(4): 810-9, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15211577

RESUMO

Hydrogen peroxide-inducible clone-5 (Hic-5), belongs to the group III LIM domain protein family and contains four carboxyl-terminal LIM domains (LIM1-LIM4). In addition to its role in focal adhesion signaling, Hic-5 acts in the nucleus as a coactivator for some steroid hormone receptors such as the glucocorticoid receptor (GR) and androgen receptor (AR). Based upon its effect on AR transactivation, Hic-5 has also been designated as ARA55. Here, we report mapping studies of Hic-5/ARA55 functional domains and establish that LIM3 and LIM4 are necessary for maximal effects on GR transactivation. However, results from yeast two-hybrid assays demonstrated that these two LIM domains together, while necessary, are not sufficient to interact with the tau2 transactivation domain of GR. LIM4 also functions as a nuclear matrix targeting sequence (NMTS) for Hic-5/ARA55, as it is both necessary and sufficient to target a heterologous protein to the nuclear matrix. Thus, as suggested from previous analysis of LIM domain-containing proteins, separate but highly related LIM domains serve distinct functions.


Assuntos
Núcleo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/metabolismo , Matriz Nuclear/metabolismo , Receptores de Glucocorticoides/metabolismo , Ativação Transcricional , Animais , Células COS , Proteínas de Transporte/metabolismo , Chlorocebus aethiops , Proteínas do Citoesqueleto/genética , Proteínas de Ligação a DNA/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Domínio LIM , Proteínas Musculares , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae , Fator de Crescimento Transformador beta/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Dedos de Zinco , Proteínas tau/genética , Proteínas tau/metabolismo
14.
Cancer Res ; 63(16): 4927-35, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12941817

RESUMO

Paxillin, a member of the group 3 subfamily of LIM domain proteins, is localized within focal adhesions and participates in a number of signal transduction pathways mobilized upon activation of cell surface receptors. In recent years, a number of group 3 LIM domain proteins have been found to also localize within the nucleus and exert direct effects on transcription. We show here that paxillin is present within nuclei and can target the nuclear matrix of CV-1 cells, cultured prostate cancer cell lines, and human prostate tissue. The increased targeting of androgen receptor to the nuclear matrix upon overexpression of paxillin may be brought about by direct interactions between paxillin and the receptor, which were detected in vitro. Paxillin functions as a coactivator for androgen receptor and glucocorticoid receptor, but not estrogen receptor alpha, similar to its close relative Hic-5/ARA55. Both paxillin and Hic-5/ARA55 use their COOH-terminal LIM domain to interact with steroid receptors. However, paxillin is distinguished from Hic-5/ARA55 by both the location of its receptor coactivation domain (i.e., COOH-terminal LIM domain) and by the dominant-negative activity of its NH(2)-terminal domain. Thus, highly related group 3 LIM domain proteins may use distinct mechanisms to modulate steroid hormone receptor transactivation.


Assuntos
Proteínas do Citoesqueleto/fisiologia , Fosfoproteínas/fisiologia , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Ativação Transcricional , Proteínas do Citoesqueleto/análise , Proteínas do Citoesqueleto/química , Humanos , Masculino , Matriz Nuclear/química , Paxilina , Fosfoproteínas/análise , Fosfoproteínas/química , Neoplasias da Próstata/patologia , Receptores de Glucocorticoides/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA